NC State
BioResources
Kasmani, J., Mohammadpour, H., and Samariha, A. (2021). "Replacement of imported long fiber kraft pulp with lignocellulosic nanofibers and cationic materials in the production of durable paper," BioResources 16(2), 3662-3677.

Abstract

Usage of cellulosic nanofibers, starch-nanocellulose, and polyacrylamide-nanocellulose hybrid systems were investigated for the replacement of imported long bleached kraft fibers in the production of durable papers. In this study, imported softwood kraft pulp was added to cotton pulp at four levels. Nanofibrillated cellulose (NFC) prepared from chemimechanical pulp was added to cotton pulp at a 5% level with optional 1% cationic starch or 0.1% cationic polyacrylamide. Comparative tests were done without NFC at three levels of either cationic starch or cationic polyacrylamide. For each condition, 80 gm-2 handsheets were made, and the physical, mechanical, and optical properties of the paper were compared. The results showed that increases of NFC yielded higher surface smoothness, tensile strength, resistance to bursting, tearing energy, folding endurance, yellowness, and opacity. It also reduced brightness and porosity whether added singly or in combination with cationic starch or polyacrylamide. Increasing cationic starch also increased surface smoothness, tensile strength, resistance to bursting, and folding endurance, but paper opacity was reduced. The field emission-scanning electron microscopy results showed that increased NFC reduced porosity, the paper surface became smoother, and the pores were relatively filled. Finally, the combined treatment of 5% NFC and 1% cationic starch is introduced as a suitable combination.


Download PDF