NC State
BioResources
Gómez-de la Cruz, F. J., Casanova-Peláez, P. J., López-García, R., and Cruz-Peragón, F. (2015). "Review of the drying kinetics of olive oil mill wastes: Biomass recovery," BioRes. 10(3), 6055-6080.

Abstract

The drying kinetics of olive oil mill wastes was analyzed based on experiments carried out by various researchers utilizing different drying systems. A critical review of the literature was done, and mathematical models of drying curves proposed by investigators were evaluated. A comparison between the best mathematical models of fit in the drying curves used in past experiments and a two-term Gaussian model was performed. This model improved all the results of fit in each experiment. Drying rates and drying stages were obtained and discussed. An average drying rate for each experiment from the two-term Gaussian model was calculated. This value allowed for visualizing and comparing the average speed of evaporated water in each experiment for the different dryers. Finally, and after having verified that almost all drying occurs mainly by a diffusion phenomenon, an analysis on the effective moisture diffusivity and activation energy values was performed. The results indicated that there was no dependency of these quantities on independent variables such as the drying air temperature, the drying air velocity, and the sample thickness. It follows that drying of olive oil mill wastes is a very complex physical process that depends heavily on aspects such as pieces of pit, pulp, skin, vegetation water, olive oil content, sugars and organics compounds of different nature.
Download PDF