Abstract
The charged nature of a cellulosic fiber surface is expected to play major roles in such phenomena as fiber dispersion, flocculation, adhesion, and adsorption of polyelectrolytes. This review focuses on the evaluation of such charges by means of electrokinetic measurements, with emphasis on the fiber-pad streaming potential technique. Results of recent experiments suggest that a continuous network or networks of pores below the outer surface of a kraft fiber can significantly contribute to observed streaming potential data. At present it is not clear whether the main subsurface contributions to the observed electrokinetic effects come from fibrillar layers on the fiber surfaces or from systems of nanopores within the cell walls of fibers. Based on the literature it is possible to suggest two conceptual models to account for the fact that the streaming potential of polymer-treated fibers can change in sign, dependent on the concentration of salt. Additional research is needed to clarify various theoretical and practical points. There may be oppor-tunities to make more effective use of streaming potential tests in the future by carrying out such tests at reduced salt levels.
Download PDF