NC State
T. Tuovinen, J. Jeronen and P. Becker. Simulation of sloshing of condensate water inside a drying cylinder using particle finite element method. In Advances in Pulp and Paper Research, Oxford 2017, Trans. of the XVIth Fund. Res. Symp. Oxford, 2017, (W.Batchelor and D. Söderberg, eds), pp 383–407, FRC, Manchester, 2018.


Energy consumption is a key issue in paper making due to its high costs and for ecological reasons. In this paper, we focus on the simulation of the drying section, with a special emphasis on the heat transfer inside a steam-heated drying cylinder, accounting for the sloshing of condensate water inside the cylinder. It is known that the condensate creates a barrier reducing the efficiency of heat transfer through the cylinder surface, a shortcoming that can be overcome by the addition of turbulator bars that increase the convective heat transfer through the water layer. In this study, we simulate the fluid flow and heat transfer in the drying roll for both the water and steam phase, but for simplicity, neglect the phase change.The Particle Finite Element Method with a fixed mesh (PFEM-2) is used to compute the numerical solution. Our aim is to show the capability of this method for solving complex sloshing phenomena with adequate qualitative accuracy and computational efficiency.

Download PDF