NC State
BioResources
Lin, Y.-S., and Lee, W.-C. (2011). "Simultaneous saccharification and fermentation of alkali-pretreated cogongrass for bioethanol production," BioRes. 6(3), 2744-2756.

Abstract

Simultaneous saccharification and fermentation (SSF) of alkaline pretreated cogongrass to ethanol was optimized using the commercial cellulase Accellerase 1500 and Ethanol Red dry yeast. Cogongrass was pretreated with 10% (wt) NaOH at room temperature for 24 hours, resulting in an increase in the cellulose percentage from 38.5% to 60.5%. Each SSF of alkali-pretreated cogongrass was carried out with 1 g/L of dry yeast loading at pH 5.0 under 150 rpm shaking. Response surface methodology (RSM) based on a three-level three-factor Box-Behnken design was employed to optimize the key variables within the following ranges: cellulase concentration per unit gram water-insoluble cellulose (WIS) (0.15-0.25 mL/g-WIS), substrate concentration (5-15 % WIS, w/w), and temperature (35-45°C) for the SSF process. The response surface model arrived at the optimum SSF conditions: cellulase concentration of 0.255 ml/g-WIS, temperature at 37.5°C, and substrate concentration of 7.28% WIS for obtaining 80.3 % ethanol yield in 72 h. The optimal conditions were verified experimentally with an average absolute relative deviation of 3.01 %. Also, the SSF was scaled up to a 5-L rotary drum reactor filled with 1 kg of substrate under the optimal conditions, and an ethanol yield of 76.2% was obtained.
Download PDF