NC State
Wang, H., Liu, Y., Wang, Z., Yang, G., and Lucia, L. A. (2016). "Structural analysis of fast-growing aspen alkaline peroxide mechanical pulp lignin: A post-enzymatic treatment," BioRes. 11(1), 2723-2733.


An enzymatic mild acidic hydrolysis was used to separate and purify residual lignin from alkaline peroxide mechanical pulp (APMP). Using the optimum conditions for the laccase treatment (pH 4.5, temperature 50 °C, lignin consistency of 1%, a reaction time of 60 min, and a laccase dosage of 8 μ/g), oven-dried lignin was treated with laccase and in a laccase mediator system (LMS) to explore the mechanism for laccase and the LMS modification of APMP. The changes of functional groups in lignin were analyzed using nuclear magnetic resonance (31P-NMR and 13C-NMR). The molecular weight distributions of the lignin samples were confirmed by gel permeation chromatography (GPC). The 31P-NMR and 13C-NMR spectra revealed that the lignin structure changed significantly with the laccase and the LMS treatments. Meanwhile, GPC demonstrated that laccase without a mediator could lead to the polymerization of lignin, while the LMS could degrade the lignin. Hence, it was concluded that laccase is an attractive enzyme for lignin modification.
Download PDF