Abstract
Nanoparticles are widely used in the papermaking industry as retention/ drainage aids, usually in conjunction with a high mass cationic polyelectrolyte such as cationic starch. However, little convincing knowledge of their role and mechanism in the wet-end system is yet found. This work focused on the role of nanosilica on papermaking wet end system in response to some processing parameters (drainage, retention, and electrostatic force of the whole system). The observations indicated that the nanosilica performance is defined by interactions of nanosilica with the complex aqueous environment of wet end system. The interaction mechanism seems to rely on introduction of nanoparticles into a cationic starch-fines-fibers network, converting the fiber mat on the forming wire into a porous structure that is responsive to retention and drainage.Download PDF