NC State
El Mansouri, N.-E., Yuan, Q., and Huang, F. (2011). "Synthesis and characterization of kraft lignin-based epoxy resins," BioRes. 6(3), 2492-2503.


Epoxidization is an interesting way to develop a new application of lignin and therefore to improve its application potential. In this work, kraft lignin-based epoxy resins were obtained by the epoxidization reaction, using the kraft lignin recovered directly from pulping liquor and modified by a methylolation reaction. The methylolated lignins were obtained by the reaction of original kraft lignin with formaldehyde and glyoxal, which is a less volatile and less toxic aldehyde. 1H-NMR spectroscopy showed that methylolated kraft lignin has more hydroxymethyl groups than glyoxalated kraft lignin. For the epoxidization reaction we studied the influence of the lignin:NaOH (w/w) ratio, temperature, and time of the reaction on the properties of the prepared epoxidized lignins. The structures of lignin-based epoxy resins were followed by epoxy index test and FTIR spectroscopy. Optimal conditions were obtained for lignin-based epoxy resin produced at lignin/NaOH = 1/3 at 70 ºC for 3h. Thermogravimetry analysis (TGA) revealed that the epoxidization enhances the thermal stability of lignins and may allow a wider temperature range for applications with lignin epoxy-PF blends.
Download PDF