NC State
BioResources
Lv, P., Almeida, G., and Perré, P. (2015). "TGA-FTIR analysis of torrefaction of lignocellulosic components (cellulose, xylan, lignin) in isothermal conditions over a wide range of time durations," BioRes. 10(3), 4239-4251.

Abstract

This study investigated chemical decomposition of lignocellulosic components in the course of torrefaction under isothermal conditions for durations up to 5 hours. The goal was a better understanding of the behaviour of biomass, at both short and long residence times, which is important for innovation in the chemical and bioenergy industries. Gaseous and solid-phase decomposition products of cellulose, xylan, and two lignins, were studied following torrefaction at three temperatures (220, 250, and 280 °C) for a continuous recording of mass loss and emission of volatiles over 5 hours. Two decomposition stages were revealed for xylan, with a notable release of CO that increased with treatment temperature. 4-O-methyl glucurono-units on the side chains of xylan degraded first, and acetyl groups and macromolecule fragments accounted for the second degradation, starting at 250 °C. The primary production of acetic acid occurred at 280 °C. For the two lignins, decomposition reactions predominated at lower temperatures, while rearrangement prevailed at 280 °C. The emission of phenol was a clear distinction between the two. Cellulose was thermally stable at short times under all treatments, but it decomposed dramatically afterwards, especially at 280 °C.
Download PDF