NC State
A. Brandberg and A. Kulachenko. The effect of geometry changes on the mechanical stiffness of fiber-fiber bonds. In Advances in Pulp and Paper Research, Oxford 2017, Trans. of the XVIth Fund. Res. Symp. Oxford, 2017, (W.Batchelor and D.Söderberg, eds), pp 683–719, FRC, Manchester, 2018.


In this work, we discuss the effect of geometry on the compliance of the fibre bond regions against normal and tangent loads. Since the fibre bonds play a key role in defining the paper strength, the compliance of the bond regions can affect the amount of elastic energy stored in the bonds and thus change not only the strength but also the stiffness of paper products under certain conditions. Using finite element simulation tools, we overcome the major difficulty of performing controlled mechanical testing of the isolated bond region and reveal the key geometrical factors affecting the compliance of the bond region. Specifically, we show that the compliance of the fiber-fiber bond is strongly governed by its geometric configuration after pressing. Among the strongest factors is the collapse of the lumen and the crossing angle.
Using the range of obtained stiffness values, we demonstrated the effect the bond stiffness has on the stiffness of the network using fiber-level simulation tools. We show how the dependence of tangent bond stiffness on fiber-to-fiber angle further softens the more compliance cross-machine direction.

Download PDF