NC State
BioResources
Abed, I., Paraschiv, M., Loubar, K., Zagrouba, F., and Tazerout, M. (2012). "Thermogravimetric investigation and thermal conversion kinetics of typical North African and Middle Eastern lignocellulosic wastes," BioRes. 7(1), 1200-1220.

Abstract

The aim of this work was to thermally characterize the renewable lignocellulosic bioresources derived from palm trees in order to highlight their energy potential. Pyrolysis and combustion behaviours of date stones (DS) agricultural by-products were tested by thermo-gravimetric analysis, and the main chemical compositions were analyzed. The work has also been conducted to identify their most important physical characteristics. The study of the sizes and heating rate effects constitute the first part of the experimental work. Inert atmosphere and three heating rates: 10, 20, and 50 °C/min, were applied to various particle sizes of DS. In the second part, tests were carried out in an oxidizing atmosphere (21% O2) by varying the size of the DS. The kinetic parameters such as pre-exponential factor and activation energy were determined. Increasing the particle sizes and the heating rates didn’t have an appreciable influence on the global weight losses. However, degradation rates were significant with the porous structure of the DS. Weight losses in inert and oxidizing atmospheres were found to occur in two stages (drying and devolatilization) and in three stages (drying, devolatilization, and oxidation of the char).
Download PDF