NC State
BioResources
Nazerian, M., Dalirzadeh, A., and Farrokhpayam, S. R. (2015). "Use of almond shell powder in modification of the physical and mechanical properties of medium density fiberboard," BioRes. 10(1), 169-181.

Abstract

This study evaluated the effects of almond shell powder content as an extender, as well as the effects of varying paraffin contents, temperature, and press time on the properties of medium-density fiberboard. Response surface methodology (RSM) based on a five-level, four-variable central composite rotatable design was applied to evaluate the effects of independent variables on the modulus of rupture (MOR), internal bonding (IB), and thickness swelling (TS) of medium-density fiberboard. Mathematical model equations were derived from computer simulation programming to optimize the properties of the panels. These equations, which are second-order response functions representing MOR, IB, and TS, were expressed as functions of four operating parameters of panel properties. Predicted values were found to be in agreement with experimental values (R2 values of 0.93, 0.90, and 0.90 for MOR, IB, and TS, respectively). The study showed that RSM can be efficiently applied in modeling fiberboard properties. It was found that almond shell powder maintained the MOR, IB, and TS at desirable levels up to 10.6% as an extender in the resin. Using 1.7% paraffin as a sizing agent, a press temperature of 158 °C, and a duration of 6.43 min had the highest impact on the improvement of the studied properties of medium-density fiberboard.
Download PDF