NC State
Pan, M., Zhou, D., Ding, T., and Zhou, X. (2010). "Water resistance and some mechanical properties of rice straw fiberboards affected by thermal modification," BioRes. 5(2), 758-769.


Rice straw fiberboard was made using 12 wt % urea-formaldehyde (UF) resin as binder and 1.0 wt % polymeric methylene diphenyl diisocyanate (pMDI) and 1.2 wt % wax emulsion as water retardants. The prepared fiberboards were heat-treated at 120, 150, 185, and 210°C in the presence of steam in a high-temperature dry kiln, respectively for 90 min. The effect of water retardants and heat treatment on the water resistant and some mechanical properties of the fiberboards were investigated. It was found that the water resistance of the rice straw fiberboard could not be improved by adding wax emulsion. The use of pMDI to the system significantly increased the interfacial strength and reduced 24-h thickness swelling (TS) compared to the boards with or without wax emulsion. After heat treatment, the TS was significantly decreased due to the decrease in the free reactive hydroxyl group content of rice straw fiber. Some mechanical properties of the fiberboards, such as the internal bonding strength, modulus of elasticity, and modulus of rapture were dramatically reduced with increasing temperature from 120°C to 210°C.
Download PDF