NC State
Vaithanomsat, P., Sangnam, A., Boonpratuang, T., Choeyklin, R., Promkiam-on, P., Chuntranuluck, S., and Kreetachat, T. (2013). "Wood degradation and optimized laccase production by resupinate white-rot fungi in northern Thailand," BioRes. 8(4), 6342-6360.


One hundred and thirty samples of resupinate white-rot fungi were collected from natural sites in Northern Thailand during the dry season (October-December) as a bioresource for lignin-degrading enzymes (laccase (Lac), lignin peroxidase (LiP), and manganese peroxidase (MnP)). All 130 isolated fungal strains grew well in potato dextrose broth and produced lignin-degrading enzymes at different levels after 7 days of incubation. The selected resupinate fungi, RCK783S, produced maximum Lac at 4,218 U/L, whereas MnP and LiP activities were detected at relatively low levels in all selected fungal strains. The RCK783S was further identified as a new record of Fibrodontia sp. in Thailand. Response surface methodology (RSM) was applied to evaluate the effect of medium composition, i.e., peptone, glycerol, L-asparagine, and CuSO4, on Lac production by Fibrodontia sp. RCK783S. The experiments showed optimum concentrations of peptone, glycerol, L-asparagine, and CuSO4 at 0.625, 15.00, 2.188, and 0.003 g/L, respectively, to produce the highest Lac concentration of 6,086.01 U/L, a 1.44-fold increase from that in the original medium. In addition, the degradation of Eucalyptus camaldulensis was investigated during the solid-state cultivation of Fibrodontia sp. RCK783S. The results showed that lignin was degraded, with lignin loss being 18% after 30 days, coinciding with the highest released Lac activity.
Download PDF