Abstract
Nickel-based activated carbon was prepared from coconut shell activated carbon by electroless plating with palladium-free activation. The materials were characterized by scanning electron microscopy (SEM), X-ray energy dispersion spectroscopy (EDS), vibrating sample magnetometry (VSM), and vector network analyzer, respectively. The results show that the surface of the activated carbon was covered by a Ni-P coating, which was uniform, compact, and continuous and had an obvious metallic sheen. The content of P and Ni was 2.73% and 97.27% in the coating. Compared with the untreated activated carbon, the real permeability μ′ and imaginary permeability μ″ of Ni-based activated carbon became greater, whereas the real permittivity ε′ and imaginary permittivity ε″ became smaller. Also, the plated activated carbon was magnetic, making it suitable for some special applications. In general, the method reported here might be a feasible procedure to coat activated carbon with other magnetic metals, which may find application in various areas.Download PDF