NC State
BioResources
  • Editorialpp 4499-4500Hubbe, M. A. (2012). "The Wood Age - Part of our past, but should we wish for it as our future?" BioRes. 7(4), 4499-4500.AbstractArticlePDF

    A new book by Radkau, Wood. A History, provides telling insight into the cleverness and also into the short-sightedness of humans in their almost uninterrupted dependence on forest resources. This essay touches upon the earliest evidence of prehistoric wood-based technologies – showing examples where humans have tended, in many generations, to exhaust their readily available resources. Beginning in the Industrial Revolution a greatly expanded usage of first coal and the petroleum have tended to take some of the pressure off of the use of wood as a fuel source. But there are early signs that the situation may be changing soon. Large wood-to-liquid-fuel facilities are being talked about. Though the usage of wood for fuel has the potential to be a sustainable enterprise, human history suggests we should exercise caution.

  • Editorialpp 1-2Leung, Y.-F., and Catts, G. (2013). "The joy of bioresources: Sustainable forest-recreation connections," BioRes. 8(1), 1-2.AbstractArticlePDF

    Forests have long-standing relationships with humanity beyond the material aspects. Recreation is an essential human need, and forests possess intrinsic values to support such a need in direct, authentic, and emotional ways. Quality recreation experiences can lead to a greater appreciation of bioresources and deeper support for forest conservation. The forest-recreation connections should be celebrated and sustained in this age of rapid social, environmental, and technological changes.

  • Editorialpp 3-5Ayoub, A., Venditti, R. A., Pawlak, J. J., and Massardier, V. (2013). "Combined application of extrusion and irradiation technologies: A strategy oriented for green and cost-effective chemistry," BioRes. 8(1), 3-5.AbstractArticlePDF

    Reactive extrusion is an attractive green route for cost-effective polymer processing, which has the potential to enhance the commercial viability of biomass-derived materials. In reactive extrusion, compatibilizers can be generated in the blend preparation through polymer-polymer grafting reactions using functionalized polymers. One very interesting new green strategy for processing is the use of intense UV-irradiation to create free radicals and controllable, ultra-fast reactions. It is reasonable to expect that the use of extrusion/irradiation green technology will be an important way to improve properties and compatibility of renewable biomass- derived polymers. We believe that in the future, many more cost-effective, sustainable extrusion/irradiation reaction processes will be developed to replace inefficient conventional biomass conversion procedures and stimulate the bioproduct-based industry.

  • Editorialpp 6-7Chen, Q., Chen, F., and Yan, Y. (2013). "Fluorescent semiconductor nanocrystals, a promising fluorescent anti-counterfeiting material for specialty paper," BioRes. 8(1), 6-7.AbstractArticlePDF

    Fluorescent semiconductor nanocrystals, also called quantum dots (QDs), have unique electronic and optical properties. One of the most useful features of QDs is that whereas their absorption spectra are broad, their emission spectra are very narrow. Different QDs can emit different wavelengths of visible light under UV excitation. QDs as a fluorescent anti-counterfeiting material have been attracting great interest in the application of specialty papers, such as security paper, banknote paper, packaging paper, etc. An anti-counterfeiting technique using QDs is one of the newest achievements in the anti-counterfeiting field. In the long run, research and development in the area of QDs anti-counterfeiting will surely create many fruitful results.

  • Editorialpp 8-11Wang, S., Zhao, X., Xing, G., and Yang, L. (2013). "Large-scale biochar production from crop residue: A new idea and the biogas-energy pyrolysis system," BioRes. 8(1), 8-11.AbstractArticlePDF

    Biochar is an effective means to withdraw carbon dioxide (CO2) from the atmosphere and consequently influence the trend of global climate change. However, there still are substantial knowledge gaps for this idea to be applicable. One big question is how to produce biochar from biomass on a large scale. Our idea is to use biogas produced from agricultural wastes as thermal energy for biochar production from cheap crop residues. A continuous biogas-energy pyrolysis system has been designed and successfully piloted to utilize crop residues for biochar production.

  • Editorialpp 1508-1509Hubbe, M. A. (2013). "Life in the Forest Canopy," BioRes. 8(2), 1508-1509.AbstractArticlePDF

    Scientists have been devoting increased time and attention to the tops of trees. As made clear by results of their studies, the environment of the forest canopy is teeming with life. Perhaps because the crowns of trees are difficult for people to reach, and due to the micro-climates within them, they hold a rich and diverse collection of life forms. Advances in the use of ropes, ladders, and suspended walkways is now making it possible for humans to be more frequent visitors to these realms.

  • Editorialpp 1510-1512Zhu, S., Yu, P., Wang, Q., Cheng, B., Chen, J., and Wu, Y. (2013). "Breaking the barriers of lignocellulosic ethanol production using ionic liquid technology," BioRes. 8(2), 1510-1512.AbstractArticlePDF

    Although the use of ionic liquids (ILs) has provided a potentially effective technical tool to improve the lignocellulosic ethanol production process, the technology still is facing great challenges with respect to its efficiency and economic viability. This editorial gives a systematical analysis of the potential and limitations of lignocellulosic ethanol production using IL technology. The use of ILs establishes a new platform for fractionation of lignocellulosic biomass. The IL pretreatment of lignocellulosic biomass can greatly increase its saccharification rate and the fermentable sugar yield. Use of ILs can also intensify the ethanol fermentation process and improve ethanol separation efficiency from its fermentation broth. However, many technical difficulties still exist in reducing the process costs and alleviating the environmental and ecological effects. More research and financial support are needed to overcome these difficulties.

  • Editorialpp 1513-1516Reeb, C. W., Lucia, L. A., and Venditti, R. A. (2013). "Novel screening technique: Integrated combinatorial green chemistry & life cycle analysis (CGC-LCA)," BioRes. 8(2), 1513-1516.AbstractArticlePDF

    The integration of combinatorial green chemistry (CGC), a more benign approach to combinatorial chemistry, with environmental life cycle assessment (LCA) methodologies as an improved process development methodology is discussed. It is expected that the CGC approach will require less labor and result in more globally optimized assay results, leading to more optimized unit process design. The technique utilizes chemical assay stage information to rapidly predict globally optimized process conditions based on techno-economic and LCA indicators. A simplified kraft pulping case study of the application of CGC-LCA is demonstrated herein, but CGC analyses could be applied to virtually any chemical-based project development and implementation project.

  • Editorialpp 1517-1519Li, J., Shen, J., Qian, X., and Ren, W. (2013). "Engineering of cellulosic cigarette paper to reduce the toxic emissions of smoking," BioRes. 8(2), 1517-1519.AbstractArticlePDF

    The prevalence of smoking around the world is well known. During the smoking of cigarettes, various toxins in both the mainstream smoke and sidestream smoke are huge threats to people’s health. In this context, the reduction of toxic emissions is indeed a global concern. Engineering of cigarette-related components, including cigarette paper and tobacco, is important for mitigating the negative impacts of smoking. In the case of cigarette paper, such concepts as decreasing the amount of cellulosic fibers, use of burn-promoting additives, increasing the permeability of paper, and use of catalysts, adsorbents, and/or reductants, have been proposed in the literature. The commercialization of technologies for the engineering of cellulosic paper is expected to result in the production of “healthier” cigarettes. A possible blueprint is to tailor cigarette paper to help smokers to completely quit smoking.

  • Editorialpp 3177-3180Yang, F., and Shen, J. (2013). "Reconsidering the concept of dry surface treatment of cellulosic paper to produce coated paper products," BioRes. 8(3), 3177-3180.AbstractArticlePDF

    The concept of dry surface treatment for paper coating applications has been available for more than ten years. Different from conventional coating methods such as extrusion coating and suspension coating, dry surface treatment involves a combined process of non-contact deposition of coating materials and surface smoothening of the coated paper. Pronounced features of this concept include avoidance of the need for paper drying and elimination of various negative consequences related to rewetting of the paper with water, etc. However, to date the concept has not been commercialized. Some significant challenges remain. Commercializable technologies for production of size-controllable coating particles and their electrostatic deposition onto paper are the key. Reconsidering this interesting concept may at a minimum shed light on the technological advancement in the area of pulp and paper.

@BioResJournal

54 years ago

Read More