NC State
BioResources
  • Editorialpp 4791-4792Hubbe, M. A. (2013). "On Paper - A celebration of two millennia of the work and craft of papermakers," BioRes. 8(4), 4791-4792.AbstractArticlePDF

    Those of us whose lives have been deeply touched by the technology of papermaking – and many others besides – are in for a real treat this coming fall when the book On Paper is scheduled to be published. The author, Nicholas Basbanes, employs an engaging, personalized approach as he brings to life the story of how paper has enabled the progress of civilization throughout two millennia. I first learned about Nick’s grand project, to capture the most intriguing aspects of paper’s story, during a re-broadcast of his hour-long interview that was presented on the CSPAN TV network. His enthusiasm is infectious, and it can be an uplifting experience to have him as a tour-guide to “all things paper”.

  • Editorialpp 4793-4796Wright, R. S., Bond, B. H., and Chen, Z. (2013). "Steam bending of wood; Embellishments to an ancient technique," BioRes. 8(4), 4793-4796.AbstractArticlePDF

    Bending wood dates back to antiquity in the form of baskets from willow branches. Fresh growth willow twigs are readily bent into practically any shape. When wood has been separated from the tree and dried it is more rigid, difficult to bend, and breakable. Bending drier wood with the help of heat and water is centuries old. Fishing hooks, barrel staves, and planks turned into boat hulls are examples. Steamed wood is less rigid, since adding moisture and heat to wood results in plasticization. Steaming at atmospheric pressure is common, wherein diffusion prevails as the predominant mechanism governing moisture movement. Applications using conventional atmospheric steaming can be time consuming, non-uniform, and can result in failures. Vacuum steam technology offers a promising method that utilizes pressure differentials to accelerate the addition of steam to wood due to water vapor bulk flow and subsequently an accelerated temperature rise. More uniform plasticization results in less breakage of the wood.

  • Editorialpp 1-3Mendell, B. C. (2014), "Learning from mistakes in the media to improve the communication of wood bioenergy research," BioRes. 9(1), 1-3.AbstractArticlePDF

    Successful applied research into wood bioenergy requires communication of meaningful insights to inform decision-makers and the general public. Effective communication strategies make such insights accessible. However, recent media reports often exhibit a near total absence of findings from peer-reviewed or quantitative research, highlighting a failure to communicate between applied researchers and reporters. As a result, the general public’s understanding of wood-based bioenergy remains incomplete. At a minimum, researchers can address three common lapses when communicating results of their research related to wood-based energy to increase the public’s access to technical results. First, provide context to give policymakers a sense, on a relative basis, of the importance of a given issue. Second, properly distinguish between “causal” relationships and mere happenstance or correlations. And finally, confirm facts and conclusions. Faulty assertions can cast doubts on the broader work and body of research.

  • Editorialpp 4-7Porankiewicz, B. (2014). "Wood machining investigations: Parameters to consider for thorough experimentation," BioRes. 9(1), 4-7.AbstractArticlePDF

    Investigators wanting to study aspects of wood machining face many challenges. The material under investigation is inherently different with respect to its three major axes, and it responds in various ways to local temperature, moisture, and many other variables. Researchers proposing future research projects in this area thus face a critically important task of selecting parameters to include either as variables or as quantities to hold constant. This editorial outlines key parameters and conditions of wood machining that can be considered, depending on the scope of a project.

  • Editorialpp 1824-1827Chen, R., Zhu, S., Chen, C., Cheng, B., Chen, J., and Wu, Y. (2014). "Reviving the acid hydrolysis process of lignocellulosic material in biorefinery," BioRes. 9(2), 1824-1827.AbstractArticlePDF

    The acid hydrolysis of lignocellulosic material (LM) is one of the most widely studied and important subprocess in the LM biorefinery. After acid hydrolysis, LM can be converted to various biofuels, biochemicals, and biomaterials through chemical or biochemical methods. However, conventional LM acid hydrolysis is not regarded as a cost-effective and environmentally-friendly process because it has drawbacks such as difficulties in acid recovery, equipment corrosion, and chemical wastes from the neutralization of acid and the removal of LM degradation products. Use of ionic liquids and solid acids during LM hydrolysis has provided potential technical tools to overcome these problems and has given new life to the LM acid hydrolysis process in the biorefinery. This editorial will discuss the role of the LM acid hydrolysis process in the LM biorefinery, provide an analysis of the conventional LM acid hydrolysis process, and briefly discuss new developments in the LM acid process.

  • Editorialpp 1828-1829Hubbe, M. A. (2014). "Recycling paper recycling," BioRes. 9(2), 1828-1829.AbstractArticlePDF

    What do you do after a product has served its function and is no longer needed? Ideally, you recycle it. What do you do if people have neglected or forgotten so much of what has been learned in recent years about paper recycling? Well, one of the things that someone can do is to write a book. Very little of the contents of such a book may be new. But the book itself can be highly valuable, representing a lot of effort to select and organized material that will be helpful for the current and upcoming generations of papermaking technologists. This editorial describes a new book by Dr. Pratima Bajpai entitled Recycling and Deinking of Recovered Paper. Readers who deal with the recycling of paper will probably want to have a copy of it on a handy shelf.

  • Editorialpp 3755-3756Finkbeiner, M. (2014). "Indirect land use change - Science or mission?," BioRes. 9(3), 3755-3756.AbstractArticlePDF

    The current discussions of indirect land use change (iLUC) and the greenhouse gas (GHG) reduction potential of bioresources have turned into a rather controversial debate. The scientific robustness and consistency of current iLUC models and data are at least unclear. However, representatives of the scientific community still dare to provide straightforward political advice in their papers – way beyond the fact-based ‘proof’ of their data and on a level that is usually not accepted by scientific journals. But the actual task and challenge for the scientific community is to determine the environmental performance of bioresources as objectively and fact-based as possible – with a clear and sober focus on integrity and soundness, not sense of mission.

  • Editorialpp 3757-3758Shen, J., Su, W., Yang, D., and Qian, X. (2014). "English-assisted teaching pertaining to pulp and paper in Chinese universities: An undergraduate perspective," BioRes. 9(3), 3757-3758.AbstractArticlePDF

    Currently, about 20 universities in China offer undergraduate courses related to pulp and paper. This large number is congruent with the rapid development of the Chinese pulp and paper industry in the past several decades. In the context of ever-increasing internationalization and global cooperation, English-assisted teaching in Chinese universities has much potential. The wide-spread implementation of English-assisted teaching would promote the career development of students and help foster the advancement of the Chinese pulp and paper industry.

  • Editorialpp 3759-3760Hubbe, M. A. (2014). "Zipping backwards the other way - Yet another unique aspect of cellulose," BioRes. 9(3), 3759-3760.AbstractArticlePDF

    Readers of this journal may be keenly aware of cellulose’s remarkable attributes, such as high stiffness, insolubility in just about everything, resistance to enzymatic attack, dimensional stability in the lengthwise direction, and toughness associated with the alternating crystalline zones and less organized regions. But if you dissolve cellulose and then allow it to recrystallize, the resulting crystals are at the same time radically different, and yet remarkably similar in most respects to the native form. Exactly half of the macromolecules in regenerated cellulose have been reversed 180 degrees in their direction. The behavior of dropped pencils can help explain why this happens.

  • Editorialpp 5774-5777Turon, X., Venus, J., Arshadi, M., Koutinas, M., Lin, C. S. K., and Koutinas, A. (2014). "Food waste and byproduct valorization through bio-processing: Opportunities and challenges," BioRes. 9(4), 5774-5777.AbstractArticlePDF

    The bioeconomy era will rely on efficient fractionation of renewable resources via integrated biorefineries. The food supply chain waste, despite its inherent variability, could evolve into an important industrial feedstock on account of its availability, versatility, and sustainability, for the production of bio-based products. Waste streams generated from all stages of the life cycle of food products could be refined into different fractions, which will be either purified to high-value molecules or converted via green chemical and/or biotechnological routes for the production of bio-based products. A working group of the EUBis COST Action TD1203 is taking steps to gather a critical mass of knowledge and expertise to create innovation and technological breakthroughs.

@BioResJournal

54 years ago

Read More