Research Articles
Latest articles
- Researchpp 2415-2430Niu, M., Hagman, O., Wang, X., Xie, Y., Karlsson, O., and Cai, L. (2014). "Effect of Si-Al compounds on fire properties of ultra-low density fiberboard," BioRes. 9(2), 2415-2430.AbstractArticlePDF
An ultra-low density fiberboard was made of plant fiber using a liquid frothing approach. The inflammability of the plant fiber limited its application as a candidate for building insulation materials and packaging buffering materials. Si-Al compounds were introduced into the foaming system because of the high temperature resistance of Si and Al compounds. The results from energy-dispersive spectroscopy suggested that the Si and Al relatively evenly covered the surface of the fibers, and their weight ratios in the material increased as a function of the amount of Si-Al compounds. The increasing weight ratios of Si and Al affected the fire properties of the material, reducing the released amount of heat, smoke, and off-gases such as CO and CO2, as well as decreasing the mass loss percentage, shown through the use of a Cone Calorimeter. It follows that Si-Al compounds have an evident collaborative effect on the halogen fire retardant. The system can effectively restrain the fire hazard intensity and the yields of solid and gas volatiles.
- Researchpp 2431-2445Zhu, Y., Wang, W., and Cao, J. (2014). "Improvement of hydrophobicity and dimensional stability of thermally modified southern pine wood pretreated with oleic acid," BioRes. 9(2), 2431-2445.AbstractArticlePDF
The present work used a combined approach of oleic acid (OA) impregnation and thermal modification to improve the hydrophobicity and dimensional stability of southern pine (Pinus spp.). The wood samples were first treated with OA at a concentration of 5 or 10%, and then underwent thermal modification at 160, 180, or 200 °C. Thereafter, the water-related properties of modified wood including water absorption (WA), equilibrium moisture content (EMC), and volumetric swelling (VS) were investigated. Alterations in cell wall structure and chemical components were analyzed by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), based on the mechanisms discussed. While the results showed that both OA-treatment and thermal modification can each improve the water repellency and dimensional stability of wood, the combined system proved to be more effective. The synergistic increase of water-related properties was assumed to be caused by OA increasing the hydrophobicity of thermally modified wood as well as accelerating the decomposition of hydrophilic wood components during thermal modification. This assumption was supported by both SEM and FTIR results. Therefore, this research provides an approach for improving the accessibility to the energy-efficient thermal modification.
- Researchpp 2446-2458OuYang, X.-K., Yang, L.-P., and Wen, Z.-S. (2014). "Adsorption of Pb(II) from solution using peanut shell as biosorbent in the presence of amino acid and sodium chloride," BioRes. 9(2), 2446-2458.AbstractArticlePDF
Currently, marine protein byproducts are mainly hydrolyzed and prepared for applications that depend on their physiological activity. Such uses require strict removal of heavy metal ions from the material. In this work, a green approach was proposed using peanut shells as adsorbent to remove Pb(II) from solutions containing amino acid and sodium chloride. The effects of amino acids and sodium chloride on the removal of Pb(II), as well as the influence of liquid to solid ratio, pH, temperature, and contact time on the adsorption, were studied. The results showed that the content of sodium chloride and amino acid could significantly decrease the adsorption efficiency for Pb(II). The experimental data could be described with the Langmuir adsorption isotherm model and pseudo-second order kinetic model. The adsorption capacity of the sorbent for Pb(II) was calculated from the Langmuir isotherm model and found to be 7.1 mg g-1 at pH 4.
- Researchpp 2459-2470Chiranjeevi, P. V., Pandian, M. R., and Sathish, T. (2014). "Integration of artificial neural network modeling and genetic algorithm approach for enrichment of laccase production in solid state fermentation by Pleurotus ostreatus," BioRes. 9(2), 2459-2470.AbstractArticlePDF
Black gram husk was used as a solid substrate for laccase production by Pleurotus ostreatus, and various fermentation conditions were optimized based on an artificial intelligence method. A total of six parameters, i.e., temperature, inoculum concentration, moisture content, CuSO4, glucose, and peptone concentrations, were optimized. A total of 50 experiments were conducted, and the obtained data were modeled by a hybrid of artificial neural network (ANN) and genetic algorithm (GA) approaches. ANN was employed to model the experimental data, and the predicted values were further optimized by GA. Employment of ANN–GA hybrid methodology resulted in a significant improvement, as approximately two-fold laccase production (4244 U/gds) was achieved.
- Researchpp 2471-2483Chimtong, S., Tachaapaikoon, C., Sornyotha, S., Pason, P., Waeonukul, R., Kosugi, A., and Ratanakhanokchai, K. (2014). "Symbiotic behavior during co-culturing of Clostridium thermocellum NKP-2 and Thermoanaerobacterium thermosaccharolyticum NOI-1 on corn hull," BioRes. 9(2), 2471-2483.AbstractArticlePDF
The symbiosis of co-culturing between Clostridium thermocellum NKP-2 and Thermoanaerobacterium thermosaccharolyticum NOI-1 is described. An efficient biomass-degrading enriched culture was isolated from soil that contained two different bacterial strains showing homology to C. thermocellum and T. thermosaccharolyticum. The enzymatic system produced from the isolated strains when cultivated individually on corn hulls demonstrated different cellulolytic and xylanolytic enzyme activities. Strain NKP-2 produced cellulose- and xylan-main chain cleaving enzymes such as carboxymethylcellulase (CMCase), avicelase, and xylanase as major enzymes, whereas strain NOI-1 produced primarily short- and side-chain cleaving enzymes such as cellobiohydrolase, β-glucosidase, β-xylosidase, acetyl esterase, and especially α-L-arabinofuranosidase. Enhancement of corn hull utilization, cell growth, and fermentation products (ethanol, butanol, acetic acid, butyric acid, H2, and CO2) was greatly increased during co-culturing compared with individual cultivation of both strains. The symbiotic behavior between both strains was one of mutualism, in which the synergistic degradation of corn hulls by co-action of cellulolytic and xylanolytic enzymes promoted hydrolysis of biomass for growth and fermented products.
- Researchpp 2484-2499Zhang, Y., and Luo, W. (2014). "Adsorptive removal of heavy metal from acidic wastewater with biochar produced from anaerobically digested residues: Kinetics and surface complexation modeling," BioRes. 9(2), 2484-2499.AbstractArticlePDF
In this study, the adsorptive characteristics of biochar generated from anaerobically digested garden wastes (AD-char) were investigated. Metal adsorption onto AD-chars reached equilibrium in 48 h; the adsorption capacity of Cu2+ by AD-char was 182 μmol g-1, which was higher than that of Zn2+ (35.3 μmol g-1) and Mn2+ (60.7 μmol g-1). The metal adsorption was well described by the pseudo second-order kinetic and Langmuir isotherm models. pKinta1, pKinta2, and pkCu for AD-char, which described surface protonation reactions and complexation with Cu2+, were 5.75, -10.20, and -4.70, respectively, as optimized by the surface complexation model. Cu2+ adsorption onto AD-char increased with increasing pH to < 8.6, which suggests that the presence of surface alkaline functional groups can be attributed to the metal adsorption capacity of biochar. This study concluded that converting anaerobically digested food and garden wastes into biochar could be an efficient method of treating municipal solid waste and producing metal adsorbents for environmental remediation.
- Researchpp 2500-2508Zhang, H., Pizzi, A., Lu, X., and Zhou, X. (2014). "Optimization of tensile shear strength of linear mechanically welded outer-to-inner flattened moso bamboo (Phyllostachys pubescens)," BioRes. 9(2), 2500-2508.AbstractArticlePDF
Mechanical welding technology has been widely employed in the making of bonding joints with wood. Moso bamboo, a lignocellulosic biomaterial, can also be bonded using mechanical welding technology. The surface response methodology was used to define welding parameters yielding optimal joint strength. In the range of this experiment, it was found that the vibration amplitude and the welding pressure both had a significant influence on the performance of the joint, while the welding time did not. The quadratic model was able to significantly fit the actual results and could be used to determine and optimize the bonding strength.
- Researchpp 2509-2520Xie, J., Weng, Q., Ye, G., Luo, S., Zhu, R., Zhang, A., Chen, X., and Lin, C. (2014). "Bioethanol production from sugarcane grown in heavy metal-contaminated soils," BioRes. 9(2), 2509-2520.AbstractArticlePDF
Field and laboratory experiments were conducted to evaluate the feasibility of bioethanol production using the juice of sugarcane grown in heavy metal-contaminated soils. The results suggest that the sugar concentration was not adversely affected when the sugarcane was grown in the heavy metal-contaminated soil. Although the juice of sugarcane grown in contaminated soil contained elevated levels of heavy metals, sugar fermentation and ethanol production were not adversely affected when five selected yeast species were used to mediate the processes. The preliminary research findings obtained from this study have implications for developing cost-effective technologies for simultaneous bioethanol production and soil clean-up using heavy metal-contaminated soils for energy sugarcane farming.
- Researchpp 2521-2528Yang, Z., Zhang, M., Pang, X., and Lv, B. (2014). "Classifications of decorative paper using differential reflection spectrophotometry coupled with soft independent modeling of class analogy," BioRes. 9(2), 2521-2528.AbstractArticlePDF
With the rapid development of the decorative papers industry on a worldwide scale, the aesthetic assessment of decorative papers has evolved as one of the major fields for industrial production. This study was performed to investigate the ability of visible spectroscopy and NIR spectroscopy coupled with the soft independent modeling of class analogy (SIMCA) to reflect the surface characteristics of decorative paper and to classify decorative papers with different visual characteristics. The results showed that visible spectroscopy has a higher relationship with the surface characteristics of decorative papers than the NIR data during PCA analysis due to larger variations. Additionally, when using visible spectroscopy (400 to 780 nm), the classification accuracy reached 94% to 100%, a more accurate result than could be achieved based on color data. In the results of the NIR spectroscopy (780 to 2500 nm), the classification accuracy decreased to the range 1% to 56%, except for a value of 95% for the samples that were grained with a slightly dark color, and a greater number of samples were assigned to more than one class. There were significant differences in the performance of the models built with visible spectroscopy and NIR spectroscopy, so it can be concluded that visible spectroscopy coupled with SIMCA is more useful to classify the different types of decorative papers than NIR spectroscopy.
- Researchpp 2529-2540Li, J., Zhou, P., Liu, H., Lin, J., Gong, Y., Xiao, W., and Liu, Z. (2014). "Monosaccharides and ethanol production from superfine ground sugarcane bagasse using enzyme cocktail" BioRes. 9(2), 2529-2540.AbstractArticlePDF
In this work, the effect of particle size on the enzymatic hydrolysis of milled and sieved sugarcane bagasse (SCB) was studied. The enzymatic hydrolysis and fermentability of superfine ground SCB (SGP400) using an enzyme cocktail strategy were also explored. Particle size reduction improved the enzymatic hydrolysis. The highest glucose yield was 44.75%, which was obtained from SGP400. The enzyme cocktail strategy greatly enhanced the glucose and xylose yield. The maximum glucose and xylose yield was from the enzyme cocktail of cellulase, xylanase, and pectinase. Synergistic action between xylanase and pectinase as well as cellulase and pectinase was quite noticeable. Hydrolysis times affected the degree of synergism. Ethanol production was carried out by employing simultaneous saccharification and fermentation (SSF) and semi-SSF using enzymes and their cocktails. Semi-SSF was found to be the better one compared with SSF. Xylanase and pectinase aided the ethanol production in both fermentation modes. Ethanol yield was 7.81 and 7.30 g/L for semi-SSF and SSF, respectively by using an enzyme cocktail of cellulase, β-glucosidase, pectinase, and xylanase.