NC State
BioResources
  • Researchpp 1147-1157Zhuang, J., Lin, L., Liu, J., Luo, X., Pang, C., and Ouyang, P. (2009). "Preparation of xylose and kraft pulp from poplar based on formic/acetic acid/ water system hydrolysis," BioRes. 4(3), 1147-1157.AbstractPDF
    A formic/acetic acid/water system was used in the ratios of 30:60:10, 20:60:20, and 30:50:20 separately for efficient hydrolysis and bioconversion of poplar chips, under the solid/liquid ratio of 1:12(g/ml), at 105 oC for 30, 45, 60, 75, and 90 min, respectively. The highest yield of 69.89% was at a formic/acetic acid /water ratio of 30:50:20(v/v/v), with solid/liquid in the ratio of 1:12(g/ml) at 105 oC for 90min. Lower kappa number and similar yield were achieved when hydrolytic residual woodchips were used for kraft pulping with over 2% Na2O and temperature 5 °C lower compared to untreated chips. Pulps from prehydrolysis-treated chips were easy to beat. But the tensile index, tear index, and burst index of the handsheets obtained from pulp with lowest kappa number from prehydrolysis-treated poplar chips were lower than those of the pulp from the untreated chips. Considerable xylose could be obtained from the prehydrolysis stage following kraft pulping under the same conditions for prehydrolysis-treated chips and untreated chips. However, by building on the mature kraft pulping and xylitol processes, large amounts of xylose from the hemicellulose were obtained in prehydrolysis, allowing production of high-valued products via biorefinery pathways. An economical balance of chemical dosage, energy consumption, pulp properties, and xylose value for prehydrolysis with organic acid should be reached with further investigation.
  • Researchpp 1158-1167Hu, J.-J., Lei, T.-Z., Xu, G.-Y., Shen, S.-Q., and Liu, J.-W. (2009). "Experimental study of stress relaxation in the process of cold molding with straw," BioRes. 4(3), 1158-1167.AbstractPDF
    In this article, five kinds of straws were used to do compressing molding experiments on stress relaxation by Electric Versatile Material Machine, with specially designed open mode equipment. According to the data from the transition stage of the compression process, regression equations with different straws were built by selective global fitting or piecewise fitting. In addition, the equations were verified by stress logarithm-time curves. A stress relaxation model of the five straws can be summarized by an expression involving the summation of exponential decay terms. This expression provides reference for reducing the specific energy consumption and increasing the pellet density.
  • Researchpp 1168-1177Ioelovich, M. (2009). "Accessibility and crystallinity of cellulose," BioRes. 4(3), 1168-1177.AbstractPDF
    The accessibility of cellulose samples having various degrees of crystallinity was studied with respect to molecules of water, lower primary alcohols, and lower organic acids. It was found that small water molecules have full access to non-crystalline domains of cellulose (accessibility coefficient α = 1). Molecules of the lowest polar organic liquids (methanol, ethanol, and formic acid) have partial access into the non-crystalline domains ( α <1), and with increasing diameter of the organic molecules their accessibility to cellulose structure decreases. Accessibility of cellulose samples to molecules of various substances is a linear function of the coefficient α and the content of non-crystalline domains. The relationship between crystallinity (X) and accessibility (A) of cellulose to molecules of some liquids has been established as A = α (1-X). The water molecules were found to have greater access to cellulose samples than the molecules of the investigated organic liquids. The obtained results permit use of accessibility data to estimate the crystallinity of cellulose, to examine the structural state of non-crystalline domains, and to predict the reactivity of cellulose samples toward some reagents.
  • Researchpp 1178-1189Shen, J., Song, Z., Qian, X., and Liu, W. (2009). "A preliminary investigation into the use of acid-tolerant precipitated calcium carbonate fillers in papermaking of deinked pulp derived from recycled newspaper," BioRes. 4(3), 1178-1189.AbstractPDF
    The use of acid-tolerant precipitated calcium carbonate fillers, including phosphoric acid/sodium hexametaphosphate modified precipitated CaCO3 filler, and sodium silicate/phosphoric acid/sodium hexametaphos-phate modified precipitated CaCO3 filler in papermaking of deinked pulp derived from recycled newspaper was explored. These two acid-tolerant fillers provided considerably more brightness improvement in papers in comparison the unmodified filler, presumably indicating alleviated pulp darkening achieved as a result of better acid-resistant properties. The addition of acid-tolerant fillers into the furnish slurries gave lower system pH as compared with unmodified filler. Among the three fillers used in this work, the effect on retention of modification of the filler with sodium silicate/phosphoric acid/sodium hexametaphosphate was probably the best, as evaluated from ash content measurements. For air permeability of the paper, the use of acid-tolerant fillers provided slightly more improvement in comparison to the unmodified filler. For tensile and burst strength of the paper, the use of sodium silicate/phosphoric acid/sodium hexameta-phosphate modified precipitated calcium carbonate filler gave better results as compared with the other two fillers. Additionally, the improving effect of acid-tolerant fillers on furnish static drainage was found to be slightly weaker than that of unmodified filler.
  • Researchpp 1267-1275Hamzeh, Y., Abyaz, A., Mirfatahi Niaraki, M. O., and Abdulkhani, A. (2009). "Application of surfactants as pulping additives in soda pulping of bagasse," BioRes. 4(4), 1267-1275.AbstractPDF
    The effects of several non-ionic commercial surfactants and their dosage on soda pulping and ECF bleaching of soda and soda-surfactant pulps of bagasse were investigated. The properties of bleachable pulps obtained with conventional soda and with soda-surfactants were studied and compared. The results showed application of surfactants during the soda pulping of bagasse decreased kappa number and improved the yield and brightness of resulting pulp. Using the surfactants reduced alkali consumption during pulping. The bleaching experiments showed that the pulps obtained with the three types of applied surfactants namely, ELA-2, FAE-20, and PEG1000 could be easily bleached with D0ED1 or D0EpD1 sequences. The addition of most used surfactants in soda pulping of bagasse led to higher brightness in comparison to reference pulp with the same bleaching sequence. Strength properties of bleached pulps obtained with surfactants were higher than the pulp obtained with conventional soda pulping.
  • Researchpp 1276-1284Telysheva, G., Dizhbite, T., Jashina, L., Andersone, A., Volperts, A., Ponomarenko, J., and Mironova-Ulmane, N. (2009). "Synthesis of lignin-based inorganic/organic hybrid materials favorable for detoxification of ecosystem components," BioRes. 4(4), 1276-1284.AbstractPDF
    Combination of lignin matrices (including those modified with silicon oligomers or quaternary ammonium compounds) and such inorganic building blocks as copper and manganese cations (Cu2+, Mn2+) made it possible to synthesize novel hybrid organic-inorganic materials. The synthesized hybrid materials were characterized with significantly increased (2-9 times) values of specific surface area in comparison with those for non-modified and Si-modified precursor matrices. The Cu2+-containing hybrid materials differed by enhanced sorption capacity towards proteins and bacteria.
  • Researchpp 1285-1304Bodîrlău, R., Teacă, C. A., and Spiridon, I. (2009). "Preparation and characterization of composites comprising modified hardwood and wood polymers/poly(vinyl chloride)," BioRes. 4(4), 1285-1304.AbstractPDF
    Chemical modification of hardwood sawdust from ash-tree species was carried out with a solution of maleic anhydride in acetone. Wood polymers, lignin, and cellulose were isolated from the wood sawdust and modified by the same method. Samples were characterized by Fourier transform infrared spectroscopy (FTIR), providing evidence that maleic anhydride esterifies the free hydroxyl groups of the wood polymer components. Composites comprising chemically modified wood sawdust and wood polymers (cellulose, lignin)-as variable weight percentages-, and poly (vinyl chloride) were obtained and further characterized by using FTIR spectroscopy and scanning electron microscopy (SEM). The thermal behavior of composites was investigated by using the thermogravimetric analysis (TGA). In all cases, thermal properties were affected by fillers addition.
  • Researchpp 1305-1318Haron, M. J., Tiansih, M., Ibrahim, N. A., Kassim, A., and Wan Yunus, W. M. Z. (2009). "Sorption of Cu(II) by poly(hydroxamic acid) chelating exchanger prepared from poly(methyl acrylate) grafted oil palm empty fruit bunch (OPEFB)," BioRes. 4(4), 1305-1318.AbstractPDF
    This paper describes the preparation of chemically modified oil palm empty fruit bunch (OPEFB) with hydroxamic acid functional group and its use for the sorption of Cu(II) from aqueous solution. OPEFB was grafted with poly(methylacrylate) (PMA), using H2O2/Fe2+ as initiator. The PMA grafted OPEFB (PMA-OPEFB) was treated with hydroxylammonium chloride in alkaline medium to produce hydroxamic acid grafted fiber (PHA-OPEFB). The FTIR spectrum of OPEFB grafted with PMA showed an intense absorption band at 1734 cm-1 which is attributed to C=O vibration in the grafted ester. After hydroxylamine treatment, the intensity of absorption band at 1734 cm-1 decreased and new bands appeared at the 1640 cm-1 related to C=O vibration in hydroxamic acid and at the 1568 cm-1 related to the N-H amide. Sorption of Cu(II) by PHA-OPEFB was effective over a pH range of 4 to 6. The sorption followed the Langmuir model with maximum capacities of 74.1 mg g-1 at 25 °C. The sorption process was exothermic, as shown by the negative value of enthalpy change, DH°. The free energy change (DG°) for the sorption was negative, showing that the sorption process was spontaneous. A kinetic study showed that the Cu(II) sorption followed a second order kinetic model.
  • Researchpp 1319-1329Sukhbaatar, B., Steele, P. H., Ingram, L. L., and Kim, M. (2009). "An exploratory study on the removal of acetic and formic acids from bio-oil," BioRes. 4(4), 1319-1329.AbstractPDF
    Bio-oil produced from fast pyrolysis of biomass contains various levels of acetic and formic acids derived from breakdown of cellulose and hemi-cellulose components. Removal of these organic acids from bio-oil was investigated for use as industrial chemicals as well as to improve the quality of recovered bio-oil as fuel in various applications. Calcium oxide and a quaternary ammonium anion-exchange resin were used to form acid salts of the organic acids, which were then separated, and the organic acids were generated by reacting with sulfuric acid. Both methods were found to be effective in limited ways and various difficulties encountered in this approach are discussed.
  • Researchpp 1330-1340Nechita, P., Bobu, E., Ciolacu, F., and Kontek, A. (2009). "Study on fibrous composites behaviour in hydrodynamic process of wine filtration," BioRes. 4(4), 1330-1340.AbstractPDF
    This study concerns the implementation and performance evaluation of fibrous composites in sterile filtration of wine. Conditions of preparation were established having in view that the separation of particulate contaminants from liquids by depth filtration is occurring by mechanical entrapment into structural pores and by electrokinetic adsorption, and both retention mechanisms are influenced by various factors. Functional characteristics and behaviour of the filtering composite in industrial filtration of wine were evaluated. It was found that the effectiveness with which micro-organisms were retained was substantially improved by a porous structure characterized by small pores, and respectively by high resistance to air filtration, as well as by a higher content of cationic charges in the system.

@BioResJournal

55 years ago

Read More