Research Articles
Latest articles
Alsalamah, S. A., and Alghonaim, M. I. (2025). "Hydrolytic enzymes for lignocellulose materials and their impacts on food additives and health promotion: A review," BioResources 20(3), Page numbers to be added.Kartikawati, A., Augustina, S., Adly Rahandi Lubis, M., Surya Kusumah, S., Santoso, A., Sutiawan, J., Zulfiana, D., Manurung, H., Herawati, E., Marwanto, M., Oramahi, H. A., Aristri, M. A., and Martha, R. (2025). "Tannin-based polyurethane coating for quality improvement of roof tiles composite," BioResources 20(3), 7088–7106.
View our current issue- Researchpp 1647-1662Myllytie, P., Salmi, J., and Laine, J. (2009). "The influence of pH on the adsorption and interaction of chitosan with cellulose," BioRes. 4(4), 1647-1662.AbstractPDFThe pH dependent adsorption behavior of chitosan onto a cellulose model surface was studied by quartz crystal microbalance with dissipation (QCM-D). The molecular level interactions between adsorbed chitosan layers were studied by atom force microscopy (AFM) colloidal probe force measurements in the liquid phase. Adsorption of chitosan increased with pH below the solubility limit of the polymer. The adsorption behavior could not be accounted for solely on the basis of electrostatic interactions; thus a specific interaction between the polymers existed. Swelling and viscoelastic properties of the adsorbed chitosan layer were strongly influenced by pH. At high pH, the layer deswelled and became more elastic due to insolubility of the chitosan. The colloidal probe force measurements showed a rise of electrosteric repulsion after adsorption of chitosan at pH 5. Above the solubility limit of the chitosan, at pH 7, the pull-off force and its range clearly increased compared to lower pH values, indicating that the wet adhesion between chitosan-coated cellulose surfaces increased. The presented results are discussed in relation to the ability of chitosan to improve the initial wet strength of paper.
- Researchpp 1663-1669Şahin Kol, H. (2009). "Thermal and dielectric properties of pine wood in the transverse direction," BioRes. 4(4), 1663-1669.AbstractPDFIn this paper, the thermal conductivity and dielectric parameters for pine [Pinus sylvestris (L.)] woods were determined in transverse directions for moisture conditions from oven-dry to 22 percent at a room temperature of 22 to 24 °C. Results indicate that the behaviors of thermal conductivity and dielectric parameters with moisture content and structural directions were similar. In general, the properties increased within the range studied with increasing moisture content. The radial values were similar to tangential values for both thermal conductivity and dielectric properties. The data presented here should be useful in most design problems where pine wood is subjected to microwave electric fields and heat changes.
- Researchpp 1670-1681Adsul, M. G., Terwadkar, A. P., Varma, A. J., and Gokhale, D. V. (2009). "Cellulases from Penicillium janthinellum mutants: Solid-state production and their stability in ionic liquids," BioRes. 4(4), 1670-1681.AbstractPDFThe cellulase production by P. janthinellum mutants on lignocellulosic material such as cellulose or steam exploded bagasse (SEB) in combination with wheat bran was studied in solid state fermentation (SSF). One of the mutants, EU2D21, produced the highest levels of endoglucanase (3710 IU g-1 carbon source) and β-glucosidase (155 IU g-1 carbon source). Ionic liquids are so-called green solvents that have become attractive for biocatalysis. Stability of mutant cellulases was tested in 10-50% of the ionic liquid 1-butyl-3-methylimidazolium chloride ([bmim]Cl). FPA and CMCase were significantly stable in 10% ionic liquid after 5h. β-glucosidase showed 85% of its original activity after 5 h incubation in 30% ionic liquid and retained 55% of its activity after 24 h. This enzyme preparation hydrolyzed ionic-liquid-treated SEB completely in 15 h in the presence of 20% ionic liquid. These studies revealed that there is no need of regenerating cellulose after ionic liquid treatment, since cellulase of mutant strain was found to be significantly stable in the ionic liquid.
- Researchpp 1682-1693Kurt, Ş., Uysal, B., Özcan, C., and Yildirim, M. N. (2009). "The effects of edge banding thickness of uludag fir bonded with some adhesives on withdrawal strengths of beech dowel pins in composite materials," BioRes. 4(4), 1682-1693.AbstractPDFComposite materials and wooden dowels are being used increasingly in the construction of furniture frames and inner decoration. Yet there is little information available concerning the withdrawal strength of various fasteners, and, in particular, dowels in composite materials edged solid wood edge bandings. The aim of this study was to determine the withdrawal strengths of 6, 8, 10 mm diameter dowels produced from beech with respect to edge of a medium-density fiberboard (MDF) or particleboard (PB) edged with 5, 10 and 15 mm thickness of solid wood edge banding of uludag fir, bonded with different adhesives. According to TS 4539 standard, the effects of edge banding thickness, dimension of dowels, type of composite materials and type of adhesives used for edge banding on the withdrawal strength were determined. The highest (6.37 N/mm²) withdrawal strength was obtained in beech dowels with 8 mm diameter for MDF with 5 mm thickness of solid wood edge banding of uludag fir bonded with D-VTKA adhesive. According to results, if the hole wall and the surface of dowel are smooth then the adhesives give better mechanical adhesion with dowels and composite materials.
- Researchpp 8-22Saritha, V., Maruthi, A., and Mukkanti, K. (2010). "Potential fungi for bioremediation of industrial effluents," BioRes. 5(1), 8-22.AbstractPDFTwo fungi (unidentified) were isolated from soil and marine environ-ments. These isolates were used for bioremediation of pulp and paper mill effluent at the laboratory scale. The treatment resulted in the reduction of color, lignin, and COD of the effluent in the order of 78.6%, 79.0%, and 89.4% in 21 days. A major part of reductions in these parameters occurred within 5 days of the treatment, which was also characterized by a steep decline in the pH of the effluent. The enzyme activity of these fungi was also tested, and the clearance zone was obtained in the plate assay.
- Researchpp 23-42Zhang, X., Tu, M., Paice, M., Sacciadis, G., Jiang, Z., Jemaa, N., and Thibault, A. (2010). "Bioconversion of knot rejects from a sulphite pulp mill to ethanol," BioRes. 5(1), 23-42.AbstractPDFKnot rejects obtained from pulp screening after sulphite pulping are difficult to dewater, which makes landfilling expensive and burning inefficient. The rejects were found to contain up to 50% cellulose, which is very susceptible to enzymatic hydrolysis to glucose. Knot rejects were hydrolyzed at 20% consistency in a laboratory peg mixer with cellulase enzyme. The thick slurry was liquefied within the first hour of mixing and resulted in a glucose concentration of over 100 g/L after 24 hours of reaction. This solution was fermented by yeast to give an ethanol concentration of over 5%. The laboratory results were confirmed at pilot scale with a mortar mixer (high consistency) or stirred tank reactor (medium consistency) at the 400 L and 6000 L scales, respectively. It was found that washing the knots with ammonia resulted in increased glucose conversion. Enzyme costs could be lowered by separating the enzyme from the hydrolyzed sugars by membrane ultrafiltration and recycling the enzyme to the subsequent batch of substrate. The combination of high-consistency hydrolysis and enzyme recycling minimizes capital investment, energy requirements, and enzyme costs, which are significant factors in the overall economic viability of cellulose conversion to ethanol.
- Researchpp 43-54Abdel-Kader, A. H., and Darweesh, H. H. (2010). "Setting and hardening of agro/cement composites," BioRes. 5(1), 43-54.AbstractPDFIn this study, the use of bagasse fiber (BF) and unbleached bagasse pulp (BP) in a cement matrix, as a raw material, to produce lightweight construction materials is reported. The bagasse was used as partial replacement of cement at different levels: 0% (control cement), 1%, 2% 3%, and 4% by weight. The average size of bagasse fibers was less than 2 mm. Although a reduction in the physical and mechanical strength was observed, the incorporation of either fiber or pulp increased the water of consistency and setting time. A composite containing 4% of bagasse fibers can be used for lightweight concrete. FT-IR spectra showed that the BF or BP adversely affect the rate of calcium silicate hydrate (CSH) formation by decreasing its promotion.
- Researchpp 55-69Afzal, M. T., Bedane, A. H., Sokhansanj, S., and Mahmood, W. (2010). "Storage of comminuted and uncomminuted forest biomass and its effect on fuel quality," BioRes. 5(1), 55-69.AbstractPDFWhite birch was stored in the form of bundles, wood chips, and loose slash for a period of one year to examine the changes in biomass fuel properties. The samples were collected at regular quarterly intervals to measure moisture content, CNS content, ash content, and calorific value. Data loggers were also placed into the stored woody biomass to measure the temperature change inside the piles. After the first quarter of the storage period and continuing into the next three months of storage, the moisture content showed the most significant change. The moisture content of the biomass bundles increased from 29 % to above 80 % (db). The moisture content of the pile of wood chips covered with a tarp decreased from 51% to 26% and showed a continuous decline in moisture content to the end of storage period to an average range of 16.5% (db). However, the moisture content of uncovered wood chip pile was observed to continuously increase throughout the storage period, resulting in more than double in magnitude from 59% to 160% (db). The dry matter loss was higher in wood chip piles (8~27%) than in bundles (~3%). Among the other properties, there was slightly higher loss of calorific value in wood chips (~1.6%) as compared to bundles (~0.7%) at the end of one year.
- Researchpp 70-80Sahin Kol, H., Ozbay, G., Köse, L., and Kurt, S. (2010). "Effects of some impregnation chemicals on combustion characteristics of laminated veneer lumber (LVL) produced with oak and poplar veneers," BioRes. 5(1), 70-80.AbstractPDFThe objective of this research was to investigate the effects of impregnation chemicals on the combustion properties of 3-ply laminated veneer lumber (LVL) made of Oak (Quercus petraea subsp. İberica) and Poplar (Populus tremula L.). For this purpose, oak wood was used as the outer ply and poplar used for the core ply in LVL. Borax (BX), boric acid (BA), borax+boric acid (BX+BA), and di-ammonium phosphate (DAP) were used as impregnation chemicals, and urea formaldehyde (UF), phenol formaldehyde (PF), and melamine-urea-formaldehyde (MUF) adhesives as bonding agent were used to produce LVLs. The vacuum – pressure method was used for the impregnation process. The combustion test was performed according to the procedure defined in the ASTM–E 69 standards, and during the test the mass reduction, temperature, and released gas (CO, O2) were determined for each 30 seconds. As a result, di-ammonium phosphate was found to be the most successful fire retardant chemical in LVL with MUF adhesive. LVL produced from a combination of oak and poplar veneers with MUF adhesive and impregnated with DAP can be recommended to be used as a fire resistant building material where required.
- Researchpp 81-98Soni, S. K., and Soni, R. (2010). "Regulation of cellulase synthesis in Chaetomium erraticum," BioRes. 5(1), 81-98.AbstractPDFChaetomium erraticum was capable of producing all the three components of a cellulase enzyme system including exoglucanase, endoglucanases, and b-glucosidase extracellularly. However, the cultivation conditions and the medium composition markedly affected the ability of microorganism to synthesize various enzymes. Exoglucanase was highest under static conditions, while endoglucanase and b-glucosidase were maximized under shake conditions. Among the various defined substrates, CMC proved to be the best inducer for exoglucanase under static conditions and b-glucosidase under shake conditions. MCC induced maximum endoglucanase under shake conditions. The biosynthesis of all three components of cellulases was repressed with different concentrations of glucose, puromycin, actinomycin, and actidione, while the supplementation of exogenous cyclic-AMP was fully capable of releasing the catabolite repression for production of all three components.