NC State
BioResources
  • Reviewpp 5452-5481Espinoza-Acosta, J. L., Torres-Chávez, P. I., Ramírez-Wong, B., López-Saiz, C. M., and Montaño-Leyva, B. "Antioxidant, antimicrobial, and antimutagenic properties of technical lignins and their applications," BioRes. 11(2), 5452-5481.AbstractArticlePDF

    At present, more than 70 million tons per year of technical lignins are obtained from cellulose pulping and lignocellulosic refineries (e.g., kraft, lignosulfonates, soda, and organosolv lignin). These lignins are commonly incinerated to produce steam and energy, and only a small part is used as an additive in various low volume and niche applications, such as dispersant, in concrete admixtures, as an adhesive and as a binder. Furthermore, the potential of technical lignins is considered to be beyond that of an inexpensive fuel or raw material to produce low added value products. The technical lignins consist of complex polyphenolic polymers that contain numerous chemical functional groups, such as phenolic hydroxyl, carboxylic, carbonyl, and methoxyl groups. The phenolic hydroxyl and methoxyl groups present in lignin reportedly possess various biological activities. The amount of data describing the biological activities of technical lignins has increased in the last 10 years. This review presents the most relevant research concerning the various biological activities (antioxidant, antimicrobial, antimutagenic, and others) of technical lignins. Additionally, the most promising and relevant applications are highlighted.

  • Reviewpp 5482-5499Matsakas, L., Rova, U., and Christakopoulos, P. " Strategies for enhanced biogas generation through anaerobic digestion of forest material - An overview," BioRes.11(2), 5482-5499.AbstractArticlePDF

    Incorporation of biofuels into the existing selection of fuels is a very important measure to slow down environmental destruction and to counter the imminent fossil fuel shortage. Biogas is a very interesting option for use in both electricity and heat production, and also as a fuel for vehicles. The positive fuel characteristics of biogas and the high yields of biogas obtained from traditional raw materials (e.g., animal manure) have resulted in operation of several commercial units around the globe. On the other hand, there is an increased demand for biogas production which, for the need to be met, should have renewable resources incorporated into it. Forest materials are an interesting candidate, and there is a rising interest in the research and industrial communities to exploit them as raw materials for anaerobic digestion in biogas production. In this review article, we aim to give the reader an insight into the most recent processes for conversion of various sources of forest materials into biogas.

  • Reviewpp 5500-5552Hubbe, M. A., and Koukoulas, A. A. (2016). "Wet-laid nonwovens manufacture - Chemical approaches using synthetic and cellulosic fibers," BioRes. 11(2), 5500-5552.AbstractArticlePDF

    Wet-laid forming, which can be regarded as being analogous to conventional papermaking processes but with use of chopped synthetic or staple fibers, continues to draw attention as an advantageous way to prepare advanced nonwoven textile products. This review of the literature considers scientific advances in the field, with emphasis placed on applications involving cellulosic fibers as a significant component of the product. Some primary challenges with respect to wet-laid processing concern the dispersion of the synthetic fibers in aqueous media and methods for avoiding their subsequent entanglement. Both mechanical and chemical strategies have been employed in order to achieve well-formed sheets of high uniformity and binding among the fibers to meet a variety of end-use specifications. The incorporation of cellulosic fibers has been shown to facilitate fiber dispersion and to impart certain beneficial characteristics and properties to wet-laid fabrics. The contrasting attributes of synthetic and cellulosic fibers contribute to some unique challenges during the processing of their mixtures during wet-laid forming.

  • Reviewpp 5553-5564Chen, C., Duan, C., Li, J., Liu, Y., Ma, X., Zheng, L., Stavik, J., and Ni, Y. (2016). "Cellulose (dissolving pulp) manufacturing processes and properties: A mini-review," BioRes.11(2), 5553-5564.AbstractArticlePDF

    The increasing consumption of regenerated cellulose, in particular the viscose fiber, has led to a significant development of dissolving pulps in the last decade. In this review paper, the current status of dissolving pulp with respects to raw materials, manufacturing processes, and some key issues are discussed. Non-wood materials and the process concept of upgrading paper-grade pulp into dissolving pulp are also included. Some recent developments related to the analytical methods of the purity and molecular weight distribution based on the ion chromatography and gel permeation chromatography are discussed. Finally, further processing improvements of purification, such as mechanical, chemical, and enzymatic treatment, and their combinations during the manufacturing process of dissolving pulp, are included.

  • Reviewpp 5565-5580Rosli, F., Ghazali, C. M. R., Abdullah, M. M. A. B., and Hussin, K. (2016). "A review: Characteristics of oil palm trunk (OPT) and quality improvement of palm trunk plywood by resin impregnation," BioRes . 11(2), 5565-5580.AbstractArticlePDF

    Due to the shortage of solid wood as a raw material of plywood and the abundance of oil palm trunk (OPT) waste in Malaysia, OPT has become one of the potential replacements for timber. However, OPT plywood has low performance compared with commercial plywood, due to the poor properties of OPT. There are many recent studies related to quality improvement using thermosetting impregnation, especially with formaldehyde-based resins such as urea formaldehyde (UF) and phenol formaldehyde (PF). Nevertheless, there are very limited studies related to palm trunk plywood using thermoplastic impregnation and formaldehyde-free adhesive. Formaldehyde effects can be avoided by replacing it with a thermoplastic adhesive, such as acrylonitrile butadiene styrene (ABS), to enhance and improve the quality of the plywood manufactured from OPT. In Malaysia, palm trunk plywood is used currently for non-structural materials such as formworks, cabinets, and packaging material. Hence, the enhanced quality of palm trunk plywood with a formaldehyde-free thermoplastic adhesive could produce a higher quality palm trunk plywood.

  • Reviewpp 5581-5599Mou, H. L., Wu, S., and Fardim, P. (2016). "Applications of ToF-SIMS in surface chemistry analysis of lignocellulosic biomass: A review," BioRes. 11(2), 5581-5599.AbstractArticlePDF

    Time-of-flight secondary-ion mass spectrometry (ToF-SIMS) is an advanced surface-sensitive technique that can provide both spectral and imaging information about materials. Recently, ToF-SIMS has been used for advanced studies of lignocellulosic biomass. In the current article, the application of ToF-SIMS to the characterization of the surface chemical composition and distribution of biomass components in lignocelluloses is reviewed. Moreover, extended applications of ToF-SIMS in the study of pretreatments, modification of biomaterials, and enzyme activity of lignocellulosic materials are presented and discussed. Sample preparation prior to ToF-SIMS analysis and subsequent interpretation of results is a critical factor in ensuring reliable results. The focus of this review is to give a comprehensive understanding of and offer new hints about the effects of processing conditions on the surface chemistry of lignocellulosic biomass.

  • Reviewpp 5600-5617Tajuddin, M., Ahmad, Z., and Ismail, H. (2016). "A review of natural fibers and processing operations for the production of binderless boards," BioRes. 11(2), 5600-5617.AbstractArticlePDF

    Decreasing wood supplies and the need for formaldehyde-free particleboard have become important issues. This has led to studies about the use of raw materials other than wood, along with the manufacture of particleboard without using any synthetic adhesives. This paper presents an overview of the development of binderless boards from natural fibers using a diverse range of manufacturing processes, such as heat and steam treatments. The features of binderless boards produced with various parameters, such as pressing parameters, particle sizes, and additional substances, under various manufacturing processes, are discussed. Based on the availability of natural fibers, binderless boards are typically evaluated for their physical, mechanical, and thermal properties. This review is approached with an understanding of the processes and contributing factors in producing binderless boards, helping to overcome some critical issues that are necessary for the development of future new “green” binderless boards through value-addition to enhance their usage.

  • Reviewpp 5618-5640Villaverde, J. J., Sandín-España, P., Sevilla-Morán, B., López-Goti, C., and Alonso-Prados, J. L. (2016). "Biopesticides from natural products: Current development, legislative framework, and future trends," BioRes . 11(2), 5618-5640.AbstractArticlePDF

    The importance of biomass as a source of chemicals, biofuels, and energy is widely accepted. Currently, the attention is mainly focused on the valorisation of by-products from lignocellulosic materials. Chemical compounds derived from plants and microorganisms that provide good protection for crops against weeds, pests, and diseases (biopesticide active substances) have been used to formulate pesticides. Their use is increasingly encouraged by new pesticide regulations that discourage the use of harmful active substances. This article reviews the current and future situation of biopesticides, especially natural chemical products, and focuses on their potential within the European pesticide legislative framework. Moreover, this article highlights the importance of the different modes/mechanisms of action of the active substances obtained from natural sources, the role of chemistry in biopesticide development, and how the adoption of integrated pest management practices contributes to a greater trend towards biopesticides.

  • Reviewpp 5641-5655Arévalo Gallegos, A. M., Carrera, S. H., Parra, R., Keshavarz, T., and Iqbal, H. M. N. (2016). "Bacterial cellulose: A sustainable source to develop value-added products - A review," BioRes. 11(2), 5641-5655.AbstractArticlePDF

    In recent decades, worldwide economic and environmental issues have prompted research scientists to re-direct their interests to bio-based resources, which are sustainable in nature. In this context, microbial polysaccharides, such as bacterial cellulose (BC), also known as microbial cellulose (MC), are some of the upcoming and emergent resources and have potential application in various bio- and non-bio-based sectors of the modern world. Many researchers have already established novel BC/MC production methods, and many new studies have been published on lab-scale and large-scale production aspects of BC/MC to date. To further expand the novel use of this sustainable source, significant progress toward the development of BC/MC has appeared in recent years. Specifically, there have been many publications and/or research reports on the valorization of BC/MC in the food, paper, materials, biomedical, pharmaceutical, and cosmeceutical industries, among others. This review will address the novel application aspects of BC/MC today, with the aim of demonstrating the importance of this sustainable and novel source in the development of value-added products.