NC State
BioResources
  • Reviewpp 8771-8780Palanisamy, S., Murugesan, T. M., Palaniappan, M., Santulli, C., and Ayrilmis, N. (2023). “Use of hemp waste for the development of mycelium-grown matrix biocomposites: A concise bibliographic review,” BioResources 18(4), 8771-8780.AbstractArticlePDF

    Mycelium from fungi can serve as the matrix or as a self-grown binder in a biocomposite. The reinforcing component may consist of various combinations of agro-based waste in short fiber or powder form. The complexity of their development is linked not only to the selection of the substrate, but also to the growth conditions of the mycelial material and its consolidation in a final form by the temperature increase that takes place. These materials have initially been proposed as a replacement for polystyrene foams, and the characterization is concentrated on compression performance and acoustic and thermal insulation properties. The present review concentrates on substrates that originated from the large productive system based on hemp (shives or hurds, waste fibers, and mats). Attention is paid to the performance obtained and to the amount of waste that is possibly employed to serve as the substrate.

  • Reviewpp 8781-8805Rodríguez, G. E., Bustos Ávila, C., and Cloutier, A. (2023). “Use of phase change materials in wood and wood-based composites for thermal energy storage: A Review,” BioResources 18(4), 8781-8805.AbstractArticlePDF

    Using phase change materials (PCMs) is an efficient solution for reducing energy consumption in buildings. These materials have a large capacity for storing thermal energy, making them an appealing option for energy management purposes. Phase change materials have been successfully incorporated into various construction materials such as concrete, brick, or plaster. The primary objective of this review is to examine previous studies conducted on the application of PCMs in wood. The initial section presents an overview of the direct impregnation techniques utilized for wooden materials. This is followed by a discussion on the implementation of macroencapsulated PCMs in wooden structures that are typically present in residential buildings. In addition, the use of shape-stabilized PCM/wood composites, preventing potential leaks during the phase change transition, is explored. Finally, patents related to the use of PCMs in wood are described. Future challenges include the incorporation of PCMs into wood composites to improve their thermal properties. This literature review shows that there is a gap in knowledge regarding the utilization of phase change materials in wood-based panels such as oriented strandboards, fiberboards, and particleboards. This provides an opportunity for future research to improve the performance of the products manufactured by the wood-based panels industry.

@BioResJournal

55 years ago

Read More