NC State
BioResources
  • Researchpp 3067-3075Kesik, H. I., Özkan, O. E., and Öncel, M. (2017). "Characteristics of a protective layer on oil heat-treated Scots pine and fir wood," BioRes. 12(2), 3067-3075.AbstractArticlePDF
    Effects of natural weathering were studied relative to the adhesion strength, surface hardness, and color change of coated heat-treated and untreated Turkish fir and Scots pine wood. For this study, water-based coatings (varnish and paint) were applied on heat-treated samples. The coated heat-treated, and untreated samples were naturally weathered for one year. The difference between several properties such as adhesion strength, hardness, and color were measured before and after weathering. The test results showed that varnished heat-treated samples had good performance as compared to those of the untreated samples.
  • Researchpp 3076-3087Ibrahim, N., Ab Wahab, M. K., Ngoc Uylan, D., and Ismail, H. (2017). "Physical and degradation properties of polylactic acid and thermoplastic starch blends - Effect of citric acid treatment on starch structures," BioRes. 12(2), 3076-3087.AbstractArticlePDF

    The physical and degradation properties of polylactic (PLA)/thermoplastic starch (TPS) blends after TPS modification with citric acid (CA) were investigated. The interfacial adhesion between the PLA and TPS was expected to improve, thus enhancing the physical properties of the PLA/TPS blends. The tensile strength and Young’s modulus for PLA/TPS blends at (60/40) and (40/60) blends ratio were found to increase after modification with CA. On the other hand, the elongation at break of the (60/40) blend decreased, while elongation at break of the (40/60) blend increased. Meanwhile, an additional peak at 1721 cm-1 was detected by the FTIR spectroscopic analysis, which indicated that the TPS had chemically interacted with the CA. The biodegradability properties of PLA/TPS blends were also improved after treatment with CA. The deterioration of PLA/TPS blends was attributed to the incorporation of CA; O2 from the soil was attracted to the PLA/TPS blends, thus speeding up the degradation process of the blends.

  • Researchpp 3088-3107Carvalho, D. M., Queiroz, J. H., and Colodette, J. L. (2017). "Hydrothermal and acid pretreatments improve ethanol production from lignocellulosic biomasses," BioRes. 12(2), 3088-3107.AbstractArticlePDF

    Hydrothermal and acid pretreatments using different acid charges (1.5%, 3.0%, and 4.5% H2SO4) were proposed for eucalyptus, sugarcane bagasse, and sugarcane straw prior to their bioconversion into ethanol using the semi-simultaneous saccharification and fermentation (SSSF) process. The hydrothermal and acid pretreatments were efficient for hemicelluloses removal from eucalyptus (63 to 96%), bagasse (25 to 98%), and straw (23 to 95%) and to remove a substantial amount of lignin from eucalyptus (10 to 34%) and bagasse (10 to 27%). During pretreatments, pseudo-extractives and pseudo-lignin were generated from biomasses. The SSSF was performed in pretreated biomasses using 24 h presaccharification followed by an additional 10 h of simultaneous saccharification and fermentation (SSF). With hydrothermal pretreatment, the eucalyptus presented the highest ethanol production, but only low values for SSSF parameters were obtained, as follows: ethanol yield (0.017 g ethanol/g biomass), volumetric productivity of ethanol (0.16 g L-1 h-1), and ethanol concentration (1.6 g L-1). On the other hand, using acid pretreatment, the straw (pretreated using 4.5% H2SO4) presented the highest ethanol production among the biomasses, assessed based on ethanol yield (0.056 g ethanol/g biomass), volumetric productivity of ethanol (0.51 g L-1 h-1), and ethanol concentration (5.1 g L-1).

  • Researchpp 3108-3121Lyu, S., Lyu, D., Du, G., and Yang, Y. (2017). "Apple branch decomposition and nutrient turnover in the orchard soil," BioRes. 12(2), 3108-3121.AbstractArticlePDF

    Changes in the physical structure and nutrients contents of apple branches were explored after decomposition, and the soil quality of an orchard was evaluated after returning apple branches in situ. Scanning electron microscopy, X-ray diffractometry, and Fourier transform infrared spectroscopy were used to analyse the structural changes of the experimental material. The results showed that the structure of this material is obviously destroyed in the transverse sections and longitudinal sections. Collapsed cell walls had a negative effect on complete branches, which presented sharp decreases in cellulose contents and the partial removal of lignin and carbohydrate contents by the third year. In a final analysis of the nutrients in the branches, there was an obvious decline in macroelements (e.g., phosphorus and potassium), whereas manganese, which is a limiting factor, increased by 4-fold compared with the control. The results indicated that the addition of mulch from branches can be used to maintain a high soil quality in the third year of decomposition.

  • Researchpp 3122-3132Sadatnezhad, S. H., Khazaeian, A., Sandberg, D., and Tabarsa, T. (2017). "Continuous surface densification of wood: A new concept for large-scale industrial processing," BioRes. 12(2), 3122-3132.AbstractArticlePDF

    Fast growing and low-density species can be modified by various thermo-hydro-mechanical (THM) treatments. Wood densification is one of the promising techniques for broadening the application of these species. This study focuses on the use of a high-capacity continuous pressing technique that considerably increases the density in the region beneath the surface of poplar wood. Prior to densification at 185 °C, a softening stage was implemented, with water spraying followed by heating at a temperature of 205 °C to 235 °C. The density profile, set-recovery, and morphology of the densified surface were investigated. Densitometry revealed that an M-shaped density profile was created through the thickness, with a peak density of approximately 700 kg/m3 close to the surfaces. The set-recovery after three wetting-drying cycles was 44%, which revealed that partial stress relaxation occurred during the densification. Scanning electron microscopy (SEM) confirmed that both sides of the wood were successfully densified and that after the wetting-drying cycles, the deformed cells did not completely recover.

  • Researchpp 3133-3142Chen, M. L., Wang, C. G., Fei, B. H., Wu, H., and Zhang, S. Y. (2017). "Corrugating medium made from solid waste of bamboo paper sludge," BioRes. 12(2), 3133-3142.AbstractArticlePDF

    Corrugating medium was made from the solid waste of bamboo paper sludge and old corrugated container (OCC) pulp. The medium also incorporated additions of anion polyacrylamide as a retention agent and cationic starch as a strengthening agent. The estimated molecular mass of anion polyacrylamide, the addition level of anionic polyacrylamide, and the addition level of cationic starch were optimally designed using single-factor analysis. On this premise, the optimum addition level of the solid waste of bamboo paper sludge was found. The best process conditions for the corrugating medium included a base weight of 120 g/m-2, 10 wt.% bamboo paper sludge solid waste, 0.3 wt.% APAM (Estimated molecular mass of 600 × 104 Daltons), and 1.5 wt.% cationic starch. The apparent density, breaking length, and ring crush index were 0.53 g/cm-3, 2.51 km, and 7.48 N/mg-1, respectively, under the best process conditions. This finding could help satisfy the demand for materials used for making the corrugating medium and could support the full utilization of the solid waste of bamboo paper sludge to achieve higher value.

  • Researchpp 3143-3153Asad, M., Brahim, M., Ziegler-Devin, I., Boussetta, N., and Brosse, N. (2017). "Chemical characterization of non-saccharidic and saccharidic components of rapeseed hulls and sunflower seeds," BioRes. 12(2), 3143-3153.AbstractArticlePDF

    The main compositional characteristics of rapeseed hulls (RH) and sunflower shells (SS) were examined in terms of non-cellulosic components. The non-sugar fractions were analyzed by solid nuclear magnetic resonance (NMR) and pyrolysis-gas-chromatography/mass spectrometry (Pyr-GC-MS). Unlike SS, RH is a non-lignified biomass. The presence of large amounts of catechol and cresol suggested the presence of phytomelanin in both materials. Sugars accounted for 60% of RH and 45% of SS. Pectic compounds were extracted from the holocellulose of RH with ammonium oxalate or with citric acid, with 17% and 31% yield, respectively. A glucuronoxylan was isolated from the holocellulose of SS in basic conditions with 16% yield.

  • Researchpp 3154-3165Guo, T., Wang, Y., and Huang, J. (2017). "The effect of pH on electroless Ni-Fe-P alloy plating on poplar veneer," BioRes. 12(2), 3154-3165.AbstractArticlePDF

    Ni-Fe-P alloy coating was fabricated on poplar veneer substrates by an electroless plating method. The influence of pH on coating structure, elementary composition, thickness, crystal structure, surface resistivity, and magnetism were evaluated. The results indicated that when the plating solution pH was 9.5, the Ni-Fe-P coating had a crystal structure. The coating consisted of lamellar metal particles, and the thickness increased to 111 μm. This plated veneer showed soft magnetic properties. In contrast, when the plating solution pH was 4.5, the Ni-Fe-P coating had mainly an amorphous structure. The coating consisted of spherical metal particles, and the thickness was 67 μm. After 600 °C heat treatment, this plated veneer shifted to a crystalline structure and exhibited soft magnetic properties. In two kinds of plated veneers, the lateral direction resistivity was two times greater than the longitudinal direction resistivity.

  • Researchpp 3166-3181Dixon, P. G., Malek, S., Semple, K. E., Zhang, P. K., Smith, G. D., and Gibson, L. J. (2017). "Multiscale modelling of moso bamboo oriented strand board," BioRes. 12(2), 3166-3181.AbstractArticlePDF
    The modulus of elasticity (MOE) of three-layer moso bamboo (Phyllostachys pubescens Mazel) Oriented Strand Board (OSB) was modelled using a multiscale approach proposed for wood OSB. The modelling approach for wood OSB was adapted to bamboo OSB by accounting for the different structures of wood and bamboo tissue. The MOE of moso bamboo OSB was measured previously in bending; the strands in the surface layer had a preferred orientation and were either from the internode region of the culm or contained node tissue. The model for loading parallel to the preferred orientation of the surface strands gives a good description of the measured values of MOE for boards with internode surface strands (8.6 GPa modelled compared to 8.1 GPa previously measured), but overpredicts that for boards with surface strands containing nodes (8.8 GPa modelled compared to 6.7 previously measured). The model for loading perpendicular to the preferred orientation of the surface strands gives a good description of the MOE data if the core layer moduli are estimated using compliance averaging, for specimens with and without nodes (1.5 GPa modelled compared to 1.5 GPa previously measured).
  • Researchpp 3182-3191Qin, C., Li, S., Jiang, G., Cao, J., Guo, Y., Li, J., Zhang, B., and Han, S. (2017). "Preparation of flower-like ZnO nanoparticles in a cellulose hydrogel microreactor," BioRes. 12(2), 3182-3191.AbstractArticlePDF

    Flower-like zinc oxide (ZnO) nanoparticles were synthesized with sodium hydroxide and zinc acetate in a cellulose hydrogel microreactor (prepared by the inversion method). The samples were characterized by scanning electron microscopy, EDX, x-ray diffractometry, ultraviolet-visible diffuse reflection spectroscopy, and nitrogen adsorption-desorption. The results indicated that ZnO grows in a flower-like shape in the pores of the cellulose hydrogel. The pure hexagonal wurtzite structures have uniform diameters in the range of 10 nm to 30 nm, surface areas of 39.18 m2/g, and pore volumes of 0.2109 cm3/g. This study also investigated the photocatalytic properties. The nanoparticles have a band gap of 3.23 eV and a 95.2% efficiency for the ultraviolet degradation of rhodamine B over 3 h at room temperature.

@BioResJournal

54 years ago

Read More