Volume 12 Issue 3
Latest articles
- Researchpp 4958-4971Liu, Z., Wang L., Zhang, Y., Li, Y., Li, Z., and Cai, H. (2017). "Cellulose-lignin and xylan-lignin interactions on the formation of lignin-derived phenols in pyrolysis oil," BioRes. 12(3), 4958-4971.AbstractArticlePDF
To gain a better understanding of the effect of the interactions between two biomass components (cellulose-lignin and xylan-lignin) on lignin-derived phenolic products, two analysis methods are introduced. With 3:1, 2:1, and 1:1 ratios of cellulose and lignin, and xylan and lignin, the mixtures were subjected to fast pyrolysis, which was carried out in a fixed-bed tubular furnace at 450 to 600 °C. The phenolic content in the bio-oils was analyzed by gas chromatography-mass spectrometry. The product distributions showed that cellulose, xylan, and lignin were the main contributors to the mass of biomass bio-oil, gas, and char, respectively. The char yields decreased and the bio-oil and gas yields increased in the presences of cellulose and xylan. Comparative analyses of both the phenol content and peak area of the two methods suggest that in the case of cellulose and lignin co-pyrolysis, the formation of three kinds of phenolic products is promoted. The strength of this positive effect increased with increasing lignin content. However, the production of hydroxyphenols is promoted, while the productions of guaiacols and syringols are inhibited by the effect of xylan, which creates a different interaction between xylan and lignin.
- Researchpp 4972-4985Ziaei-tabari, H., Khademieslam, H., Bazyar, B., Nourbakhsh, A., and Hemmasi, A. H. (2017). "Preparation of cellulose nanofibers reinforced polyether-b-amide nanocomposite," BioRes. 12(3), 4972-4985.AbstractArticlePDF
A new kind of thermoplastic elastomer nanocomposite reinforced with cellulose nanofibers has been reported. The aim of this investigation was to study the interaction and dispersion of cellulose nanofibers into the Pebax matrix. These copolymers are considered as polyether-b-amide thermoplastic elastomers. They are from renewable resources, and their hydrophilic character allows them to interact with nanocellulose. The interaction and reinforcement effect of nanocellulose at 3 levels of nanocellulose, (1%, 3%, and 5%), were examined by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and other mechanical tests. The results achieved from these tests indicated appropriate effects of cellulose nanofibers for the strong interaction and close contact with the polyamide phase of the Pebax polymer via strong hydrogen bonding.
- Researchpp 4986-5000Leng, W., Hunt, J. F., and Tajvidi, M. (2017). "Effects of density, cellulose nanofibrils addition ratio, pressing method, and particle size on the bending properties of wet-formed particleboard," BioRes. 12(3), 4986-5000.AbstractArticlePDFWet-formed particleboard bonded with cellulose nanofibrils (CNF) was prepared in this work. The effects of density, CNF addition ratio, pressing method, and particle size on the bending strength were evaluated. The results showed that density had the most important effect on the modulus of elasticity (MOE), while the CNF addition ratio had the most important effect on the modulus of rupture (MOR). For panels with low density (< 640 kg/m3), the MOE and MOR did not change much with the configuration changes between particle size and pressing method. This was due to the synergistic effect of incomplete compression and poor bonding in the core area using a constant thickness (CT) pressing method, and lower face density and higher core density using a constant pressure (CP) pressing method. For panels with medium density (640 kg/m3 to 800 kg/m3), the combination of larger particles, higher CNF addition ratio, and CT pressing method contributed to the highest bending strength. Further increase to high density (> 800 kg/m3), the pressing method’s effect was more important, compared to panels with low and medium densities. With increased density and CNF addition ratio, panels were able to meet low-density and some medium-density standard MOE and MOR requirements.
- Researchpp 5001-5016Guo, D., Liu, B., Tang, Y., Zhang, J., Xia, X., and Tong, S. (2017). "Catalytic depolymerization of alkali lignin in sub- and super-critical ethanol," BioRes. 12(3), 5001-5016.AbstractArticlePDFThe effects of reaction parameters on catalytic depolymerization of alkali lignin in sub- and super-critical ethanol were investigated using a high pressure autoclave, and the liquid oil and solid char products were characterized. The experimental data indicated that Rh catalysis, controlling reaction conditions at ethanol critical temperature (240 ºC) and pressure (7.0 MPa), high ethanol/water ratios (100/0), and the medium reaction time (4 h) enhanced the depolymerization of alkali lignin to liquid oil and decreased the char formation. A gas chromatography/mass spectroscopy (GC/MS) analysis showed that the main compositions of liquid oils were phenols, esters, ketones, and acid compounds, and the supercritical state favored the formation of bio-phenols, but the subcritical state improved the generation of bio-esters. Scanning electron microscopy (SEM) and Fourier transform infrared spectrometer (FTIR) spectra analysis showed that the addition of the Raney/Ni and Rh/C catalysis could inhibit the re-fusion of alkali lignin micron-sized spheres in the supercritical ethanol, which led to an increase in the occurrence of the depolymerization reactions.
- Researchpp 5017-5030Geffert, A., Vacek, O., Jankech, A., Geffertová, J., and Milichovský, M. (2017). "Swelling of cellulosic porous materials - mathematical description and verification," BioRes. 12(3), 5017-5030.AbstractArticlePDF
The swelling of natural porous materials, including bleached pulp, as represented by mathematical descriptions, is influenced by a variety of different operating factors. The formerly used Generalised Hygroscopicity Model leads to either a disproportion between a model and a limit value of the sorption capacity or to noticeable deviation in the early swelling phase. Alternatively, the so-called Simple Bounded Growth model solely depends on the maximum sorption capacity, ignoring the physical properties that affect the fibre swelling rate. This research shows that the combination of the two models best describes the swelling process of bleached pulp – a rapid swelling phase and a slower swelling phase. The combined model was found to be useful in characterizing the well-known hornification process.
- Researchpp 5031-5044Park, C. W., Han, S. Y., Namgung, H. W., Seo, P. N., Lee. S. Y., and Lee, S. H. (2017). "Preparation and characterization of cellulose nanofibrils with varying chemical compositions," BioRes. 12(3), 5031-5044.AbstractArticlePDFCellulose nanofibrils (CNF) can be divided into lignocellulose nanofibrils (LCNF), holocellulose nanofibrils (HCNF), and pure cellulose nanofibrils (PCNF), dependent upon their chemical composition. The effect of the chemical composition on the defibrillation efficiency and the properties of the CNFs prepared by wet disk-milling was investigated using six different wood species. The defibrillation efficiency was improved when the lignin and hemicellulose was removed, and smaller fibers with diameters in the order of PCNF > HCNF > LCNF were produced. The average diameter of the hardwood LCNF was finer than that of the softwood LCNFs, but there was no noticeable difference in the diameters of the HCNF and the PCNF from the different wood species. The filtration time of CNF suspensions and the tensile properties of nanopaper sheets were longer and higher, respectively, in the order of HCNF > PCNF > LCNF from different wood species.
- Researchpp 5045-5056Liu, X., Jiang, Y., Xie, Q., Nie, S., and Song, X. (2017). "Effect of alkali pectinase pretreatment on bagasse soda-anthraquinone pulp," BioRes. 12(3), 5045-5056.AbstractArticlePDFPectinase pretreatment prior to bagasse soda-anthraquinone (AQ) pulping was conducted, and the effects of pectinase pretreatment on the pulp strength properties, energy consumption, and pulpability were evaluated in this study. Considering the pulp properties, the optimal conditions for the pectinase pretreatment were a pectinase dosage of 60 U/g (with respect to oven-dry bagasse) and 60-min treatment time. Compared with the control pulps obtained under the same treatment conditions with enzyme pretreatment (just without enzyme addition), the pretreated pulps attained a reduction in kappa number of 17.8% and an increase in total pulp yield of 15.8%. Moreover, higher breaking length, burst factor, and tear factor after soda-AQ pulping were found in the pectinase-pretreated samples, which suggests some improvements in pulp strength properties. With pectinase treatment, a 1% reduction in alkali charge and 20% decrease in pulping time were observed in subsequent pulping stages without affecting the pulp properties. Pectinase treatment prior to pulping seems to be a promising, economically feasible, and eco-friendly concept.
- Researchpp 5057-5070Weng, J., Qiu, R., and Chen, L. (2017). "Composite paper sheet containing TiO2-diatomite for removing phenol in aqueous solution," BioRes. 12(3), 5057-5070.AbstractArticlePDFComposite paper sheet containing titanium dioxide and diatomite (TiDI) was prepared via a papermaking technique. The composite sheet was applied to remove phenol from aqueous solution. The composite sheet with a 2:1 mass ratio of cellulosic-fiber to TiDI removed phenol more effectively under UV irradiation than the composite paper sheet that utilized titanium dioxide (TiO2) alone. Composite paper sheets that contained TiDI with a TiO2/diatomite mass ratio of 1:2 removed phenol most effectively. The results showed that the TiDI composite paper could serve as a functional material to photodegrade phenol from aqueous solution under UV irradiation effectively.
- Researchpp 5071-5085Jin, X. B., Jiang, Z. H., Wen, X. W., Zhang, R., and Qin, D. C. (2017). "Flame retardant properties of laminated bamboo lumber treated with monoammonium phosphate (MAP) and boric acid/borax (SBX) compounds," BioRes. 12(3), 5071-5085.AbstractArticlePDF
This study aimed to improve the flame-retardant properties of laminated bamboo lumber (LBL) using phosphorus-nitrogen-boron flame retardants (FRs). The combination of a 7:3 ratio of monoammonium phosphate (MAP) and boric acid/borax compounds (SBX), and 74.32 kg/m3 of FRs (10.3% weight gain), exhibited enhanced fireproofing performance for LBL materials. A commercial flame retardant (guanylurea phosphate) (GUP) was systematically studied as a comparison. A cone calorimeter and a thermal analyzer were used to characterize the combustion behavior and thermal stability, respectively. The flame retardants morphology in bamboo cell cavities was investigated using scanning electron microscopy (SEM) and an energy dispersive X-ray analysis (EDXA). The results showed that at a heat flux of 50 kW/m2, the heat release rate and the total heat release of LBL samples treated with MAP-SBX flame retardants decreased more considerably than that of the untreated samples. The use of MAP-SBX not only promoted carbonization of LBL greatly but also indicated a good performance of smoke and combustion suppression as well as for the GUP. Flame retardants were confirmed to penetrate into the cell cavities of the bamboo using SEM and EDXA.
- Researchpp 5086-5101Meekum, U., and Kingchang, P. (2017). "Peroxide/silane crosslinked poly(lactic acid) hybrid biocomposite reinforced with empty fruit bunch and cotton fibers for hot-fill food packaging," BioRes. 12(3), 5086-5101.AbstractArticlePDF
A biocomposite manufactured from peroxide/silane crosslinked poly(lactic acid) reinforced with hybridized empty fruit bunch (EFB) oil palm and cotton fibers was investigated. Optimization of dicumyl peroxide (DCP) and the vinyltrimethoxysilane (VTMS) crosslink system by using the 2k factorial design of experiment (DOE), with k = 2 was preliminary employed. There was no significant effect of the designed parameters, DCP(A) and VTMS(B), on the properties of the biocomposite. Concerning the environmental and economical aspects, the DPC and VTMS ratio was important. A crosslink agent content from 0.5 phr of DCP with 1 phr to 2 phr VTMS was recommended to manufacture a biocomposite with high heat distortion temperature (HDT) at above 100 °C and reasonable flow and mechanical properties. Also, the direct addition of the DCP/VTMS crosslink agent onto the PLA/rubber compound mixture and fed into a twin screw extruder for producing crosslinked PLA/EFB/cotton hybrid biocomposites were the optimized mixing methods. Shorter process line/time, ease of process steps, and reasonable engineering properties were justified. A HDT above 100 °C with a better toughness property of the biocomposite material was obtained. The PLA/PLA and PLA/ENR crosslinks via silane/moisture condensation during the sauna incubation was the prime explanation.