NC State
  • Editorialpp 4490-4494Okpala, C. O. R. (2017). "Reflecting in the woods: Can it help to enhance the formulation of (our) research questions?" BioRes. 12(3), 4490-4494.AbstractArticlePDF
    Nowadays, reflecting and reflective practice are being incorporated into undergraduate and postgraduate learning across disciplines, and thus, both can be seen as prerequisite(s) to achieving effective research activity. On the other hand, trees represent organisms characterized by a perennial lifestyle to produce a majority of terrestrial biomass. Trees, when put together as a group, take on the identity as “the woods”, which can be seen in many parts of the globe. In science, the choice and use of research questions has been considered as very useful in the definition, collection and reporting of (relevant) information. But, can reflecting in the woods enhance the formulation of (our) research questions? In this editorial, an attempt is made to respond to this question, to show that the woods has promising potential to provide a positive atmosphere for effective reflective activity for any (scientific) researcher.
  • Editorialpp 4495-4496Lenahan, O. M. (2017). "Book review: Fabriano: City of Medieval and Renaissance Papermaking – The first 500 years," BioRes. 12(3), 4495-4496.AbstractArticlePDF

    The Italian town of Fabriano is known for producing high-quality handmade paper – an industry that began in the 13th century and that has endured for eight centuries. How did the industry take hold in this Italian town and how did it endure for so long? Author Sylvia Rodgers Albro tells this story in her new book, Fabriano: City of Medieval and Renaissance Papermaking. Readers who appreciate history and engineering will enjoy Albro’s narrative, wonderful photography, and diagrams as they bring to life the art, science, and social history of papermaking in Fabriano.

  • Editorialpp 4497-4499Hubbe, M. A. (2017). "Book review of an open textbook: Sustainability: A Comprehensive Foundation," BioRes. 12(3), 4497-4499.AbstractArticlePDF

    Paper was once the lightest, lowest-cost way to make information widely available in a form suitable for study and self-improvement. But paper-based textbooks, in the modern era, tend to be heavy and they can also strain the budgets of typical students. Given the fact that you are now reading an open-access journal, you may understand why many faculty members would possibly want to use an open-access textbook for some of their courses. This editorial considers one such course, and the assessment is generally favorable. But in addition to the classroom, a good open textbook may be regarded as a suitable foundation for one’s research. By citing an open textbook in the introduction to your research article, you can provide your readers with the option of gaining enough background to better appreciate your latest research findings.

  • Researchpp 4500-4514Li, T., Li, G., Lu, Q., Zhou, J., Li, M., Zhang, S., and Li, J. (2017). "Characterization of Tectona grandis extractives by GC-MS and IR and their infusion into rubberwood to modify dimensional stability," BioRes. 12(3), 4500-4514.AbstractArticlePDF
    Teak (Tectona grandis) has been popularly known in the wood industry as a precious material due to its natural dimensional stability. To explore the main components affecting the dimensional stability of teak wood, the teak wood samples were extracted with different polar solvents, and the extractives were impregnated into rubberwood specimens to determine their effect on the dimensional stability of the modified rubberwood. The results showed that the methanol extractives of the teak wood exhibited the most significant effect on the dimensional stability of the rubberwood. The extractives were characterized by infrared (IR) and gas chromatograph/ mass spectrum (GC/MS). The GC/MS results showed that the methanol extractives primarily contained 9,10-anthracenedione, 1,1-dimethyl-3,4-bis(1-methylethenyl), and alcohol compounds. It was speculated that the alcohol compounds in the methanol extractives reacted with polar hydroxyl groups in the cell wall, which resulted in a decrease in the size of the site combined with bound water. Moreover, the hydrophobic hydrocarbon compound was impregnated into rubberwood to form a thin layer of protective film in the cells into which the water could not enter under 20 °C and 80% RH.
  • Researchpp 4515-4526Yamada, H., Miyafuji, H., Ohno, H., and Yamada, T. (2017). "Rapid and complete dissolution of softwood biomass in tetra-n-butylphosphonium hydroxide with hydrogen peroxide," BioRes. 12(3), 4515-4526.AbstractArticlePDF

    The wood dissolution properties of tetra-n-butylphosphonium hydroxide ([P4,4,4,4]OH) were investigated. Cedar wood meal was treated with several concentrations of aqueous (aq.) [P4,4,4,4]OH with hydrogen peroxide (H2O2) in a glass tube at 121 °C. The solution of 60% aq. [P4,4,4,4]OH with H2O2 at 121 °C showed the best dissolution capability for woody biomass with a high dissolution rate of 0.152 g min-1. Under this condition, 98.5% of the woody biomass, including both lignin and holocellulose, was dissolved after 3 h of treatment. The molecular weight distribution of lignin in the soluble fraction of the [P4,4,4,4]OH mixtures was determined via size exclusion chromatography, and its weight-average molecular weight decreased from approximately 7500 g/mole after 0.5 h to 2 h of treatment to 5700 g/mole after 3 h and 2500 g/mole after 5 h of treatment. Lower molecular weight components were determined by high-performance liquid chromatography, and vanillin and vanillic acid were identified. The dissolved cellulose was precipitated, and its polymerization degree decreased significantly after 0.5 h of treatment compared to that of the original cellulose.

  • Researchpp 4527-4546Hassan, N., Hamid, N. H., Jawaid, M., Tahir, P. M., and Ujang, S. (2017). "Decay resistance of acetic, propionic, and butyric anhydrides modified rubberwood against brown rot (Coniophora puteana)," BioRes. 12(3), 4527-4546.AbstractArticlePDF
    Rubber trees were cut to the dimensions 25 mm x 140 mm x 1000 mm (R x T x L) and kiln-dried (10% to 12% moisture content, MC). The specimens (20 mm x 20 mm x 5 mm) (R x T x L) were prepared, and a Soxhlet extraction with toluene/methanol/acetone (4:1:1 by volume) was performed for 8 h. The specimens were oven-dried (103 °C for 24 h) and cooled (gel silica). Then, vacuum impregnation was conducted, and reactions with acetic, propionic, and butyric anhydrides took place for 0.25 h, 1 h, 4 h, 8 h, 10 h, 15 h, 24 h, 30 h, 36 h, and 48 h at 120 °C. The chemical bonding was confirmed by Fourier transform infrared (FTIR) analysis. The specimens were leached in deionized water and exposed to brown rot (Coniophora puteana) in an incubation room at 22 °C for 16 weeks. The fastest reaction was with butyric anhydride, then propionic and acetic anhydrides. The lowest weight loss occurred with acetic anhydride after being decayed by C. puteana at 14.0% weight percent gain (WPG). All of the modified rubberwoods (acetic, propionic, and butyric anhydrides) at the maximum WPG were classified as durability class 1. The scanning electron microscopy (SEM) observation confirmed that the hyphae penetrated the cells in both the untreated and anhydride modified rubberwood.
  • Researchpp 4547-4566Steffen, F., Janzon, R., Wenig, F., and Saake, B. (2017). "Valorization of waste streams from deinked pulp mills through anaerobic digestion of deinking sludge," BioRes. 12(3), 4547-4566.AbstractArticlePDF

    Based on the results of this study, a total energy amount of 3,111 TJ/year can be produced from the anaerobic digestion of deinking sludge (DS) arising from German deinked pulp mills, which can then be used to replace up to 5% of the total energy demand for those mills. The DS examined was generated by flotation deinking at the laboratory scale from selected mixes of paper for recycling (PfR). The results from the batch fermentation tests indicated a strong dependence of the methane potential of the DS on the carbohydrates and lignin contents, which in turn are linked to the original PfR quality. The highest methane yield was observed for DS100 (25.8% carbohydrates; 5.1% lignin) with 280.4 mL/g of volatile solids (VS) added, while DS70 (14.2% carbohydrates; 24.9% lignin) showed the lowest methane yield, with 122.1 mL/gVS. All of the DS samples showed high methane production rates, in the range between 59.4 (DS70) and 118.6 mL/gVS d-1 (DS100), and kinetic constants of 0.66 to 0.79 d-1. Additionally, no distinguishable lag phases were observed, which strongly indicates the rapid biodegradation of the DS.

  • Researchpp 4567-4593Jones, B. W., Venditti, R., Park, S., and Jameel, H. (2017). "Optimization of pilot scale mechanical disk refining for improvements in enzymatic digestibility of pretreated hardwood lignocellulosics," BioRes. 12(3), 4567-4593.AbstractArticlePDF
    Mechanical refining has potential application for overcoming lignocellulosic biomass recalcitrance to enzyme hydrolysis and improving biomass digestibility. This study highlighted the ability for a pilot scale disc refiner to improve the total carbohydrate conversion to sugars from 39% (unrefined hardwood sodium carbonate biomass) to 90% (0.13 mm gap, 20% consistency, ambient temperature) by optimizing the refining variables. The different biomass properties that changed with refining indicated the expected increase in sugar conversion. Controlling the refining parameters to narrower gaps and higher consistencies increased the resulting refined biomass hydrolysis. Positive correlations that increases in net specific energy (NSE) input and refining intensity (SEL) improved the enzymatic hydrolysis. In some severe cases, over-refining occurred when smaller gaps, higher consistencies, and more energy input reached a point of diminished return. The energy input in these scenarios, however, was much greater than realistically feasible for industrial application. Although well-established in the pulp and paper industry, gaps in understanding the fundamentals of refining remain. The observations and results herein provide the justification and opportunity for further mechanical refining optimization to maximize and adapt the mechanical refining technology for maximum efficiency within the process of biochemical conversion to sugar.
  • Researchpp 4594-4605Ahmad Yahaya, A. N., Hossain, M. S., and Edyvean, R. (2017). "Analysis of phenolic compounds in empty fruit bunches in oyster mushroom cultivation and in vermicompositing," BioRes. 12(3), 4594-4605.AbstractArticlePDF

    Analyses of total phenolic compounds were carried out for oil palm empty fruit bunches (EFBs) vermicomposting in oyster mushrooms cultivation. The oyster mushrooms (Pleurotus sajor-caju) were cultivated according to the large-scale vermicomposting trial (LSVT) methods. Both oyster mushrooms cultivation and vermicomposting of EFB with earthworms enhanced the lignin degradation of EFB. Analysis of total phenolic compounds EFB vermicomposting treated with earthworms showed a decrease in total phenolics concentration from 31.1 GAE/100g extract (raw EFB) to 5.66 g GAE/100g extract (after oyster mushroom cultivation) and to less than 1.5 g GAE/100g extract at the end of vermicomposting. Gas chromatography–mass spectrometry (GC-MS) analysis of the mushroom fruiting body, spent mushrooms, and vermicompost showed no trace of phenolphenol, pyrocatechol, 4-hydrobenzoic acid, or antioxidant and flavonoid phenolics, e.g., phenol, 3,4-dimethoxy-, vanillic acid, and cinnamic acid. This indicates that the mushroom fruiting body is fit for human consumption and the final vermicompost is a useful agricultural product without the detrimental effects of spreading phenolics-loaded EFBs on the land.

  • Researchpp 4606-4626Myronycheva, O., Bandura, I., Bisko, N., Gryganskyi, A. P., and Karlsson, O. (2017). "Assessment of the growth and fruiting of 19 oyster mushroom strains for indoor cultivation on lignocellulosic wastes," BioRes. 12(3), 4606-4626.AbstractArticlePDF
    Twelve Pleurotus ostreatus (Jacq. ex Fr.) P. Kumm and six Pleurotus pulmonarius (Fr.) Quél. strains were characterized from the National Culture Collection of Mushrooms, Institute of Botany Kholodny, National Academy of Science, Kyiv, Ukraine (IBK). The strains were grown under commercial conditions on a mixture of wheat straw and sunflower shells under both winter and summer temperatures typical for those climatic conditions. The strains were divided into three groups according to their growing patterns. Important characteristics were compared with a commercial analogue, HK-35, such as vegetative growth, generative growth, and biological efficiency (1.9- to 3.1-fold), and were recorded for strains 2251, 2292, 2316, 2319, and 2320 of P. ostreatus and 2314 of P. pulmonarius. Strains 2251, 2292, 2301, 2321 and 2323 were the most suitable for commercial production, while strains 2319 and 2320 could satisfy processing industry requirements with their high biological efficiency. Strains 2287 and 2317 produced high-quality fruit bodies but probably required a higher temperature for cultivation. Strain 2318 might be attractive for some consumers due to its unique and unusual fruit body shape. Strain 2314 was the most promising for summer cultivation, while strain 537 produced the highest quality fruit bodies.