1965 Volume 1
Latest proceedings
Experiments with synthetic fibres and a special flow apparatus, yielding data for the water permeation of fibre mats in the viscous-turbulent flow regime are briefly described. It is found that, within the range of the variables concerned,the results conform well to a recently established empirical equation relating the flow resistance of a pad to the flow speed, pad porosity and fibre specific surface. This empirical expression is then used, along with an equation representing wet mat compression characteristics, to construct a theoretical model of high-speed filtration. The result is a system of non-linear partial differential equations for the suspension kinematics and the flow rate/density distributions within the forming mat. Examples of numerical solutions are presented and discussed.
When a constant pressure is applied to a fibre slurry initially at rest, it under goes a continuously decreasing acceleration, reaching a maximum filtration speed, after which the speed decreases uniformly, corresponding to a constant pressure drop filtration process. The peak speed may be as much as eight times greater than the speed characterising the final constant pressure zone. Theoretical results for the density distribution in a forming mat illustrate the effect of relative compressibility, for which the more compressible material exhibits a rapidly changing density profile near the supporting septum. It is also found that the rat eat which the mat builds up after peak slurry speed decreases with increasing time to an extent depending on the mat compressibility. Filtration experiments with a bleached sulphite pulp yield results that agree satisfactorily with the calculations, confirming predicted formation times to within less than 10 percent. The experiments thus further corroborate the predicted inverse relationship of formation time with applied pressure, as well as an approximate proportionality of formation time and sheet substance.
- 1965
Cambridgepp 242-267Visco-elasticity and Consolidation of the Fibre Network during Free Water DrainageAbstractPDFMeasurements of specific permeability and compressibility of pads of synthetic and wood pulp fibres have been made in an apparatus in which rate of flow of water through the pad, pressure drop across the pad, external applied load and pad thickness can be controlled and measured. For non-swelling fibres at high porosity, with no applied load, the Emersleben-lberall drag treatment was found to provide estimates of permeability in reasonable agreement with observed values. The relationships between solids concentration C and applied stress P and between C and pressure drop p have been studied separately in terms of the empirical compressibility equations C= MPN with p=0 and C=m(p)n with P=O. The connections between mean compacting pressure during flow and the total pressure drop, between the exponents N, n and between the coefficients M, m, are discussed. Factors influencing the compressibility and consolidation of the fibre network include the flexibility and lateral conformability of the wet fibres, which apparently affect not only their capacity to deform elastically, but also the extent to which irreversible relative movement can take place. These effects are illustrated by the properties of pads from two series of pulps, each covering a range of lignin content-Pinus radiata sulphate pulps at various stages of bleaching and Eucalyptus regnans NSSC pulps cooked to different degrees. When compacting pressures that are due to flow and external loads are applied simultaneously, the compressibility equations in Pand Ophold, within limits, for constant values of p and P,respectively.
- 1965
Cambridgepp 269-298Dependence of Sheet Properties on Formation and Forming VariablesAbstractPDFAn investigation of the effect of forming variables on handsheet strength properties showed that stock dilution, shear gradients and controlled initial drainage are factors that have major effects on sheet structure and properties. A better understanding of the causes of changes in paper strength properties resulted from the introduction of a new concept of basic sheet properties.
One basic property is the specific tensile strength. This represents the average tensile strength throughout a sheet,in contrast with the standard tensile strength, which is generally a measure of strength in the weakest part of the test samples. The well-known loss of tensile strength that occurs when handsheets are formed from stock at higher concentrations is shown to be caused mainly by small-scale substance variability, since the specific tensile strength is essentially constant over the same range of concentrations.
The effect of substance variability on other strength properties was examined by means of uniform base layer sheets with superimposed substance spots. The spots were used to obtain a known and reproducible pattern of substance variability. Notwithstanding the increased substance of the spotted sheets, they were found to be physically weaker in all properties except tearing strength. Substance variability was found also to be responsible for the reciprocal dependence of tearing strength on bursting and tensile strengths.
As a test of the practical importance of dilution and shear gradients, Fourdrinier machine trials were run in which the water removal capacity was increased considerably by the application of fan-produced vacuum under the forming zone. Sheet properties were found to be still improving up to the maximum flow box dilution or speed set by other machine limits such as drying and stock pumping.
- 1965
Cambridgepp 299-304Dependence of Sheet Properties on Formation and Forming Variables – Prepared ContributionAbstractPDFAs with all papermaking characteristics, the interpretation of observations on the behaviour of wood fibre networks is made more difficult by the heterogeneous nature of the fibres in a given pulp. The fractionation of fibres by length indeed makes analysis of the phenomena easier, but the flexibilities of fibres of equal lengths in the same pulp are very varied and it is well known that this factor has a great deal to do with wet web formation and its strengthening during drying.
We were able to compare, for example, the development during slow drying of the strength of wet webs made of fibres from the same unbeaten pulp, fibres of the same length, but of different flexibility and wall thickness. The method for sorting pulp fibres by flexibility is a simple one that uses the differences in behaviour of these fibres in the networks while in motion. We shall say a few words about this method later, as we think it can make useful contributions in the field of papermaking fibrous networks.
Previous work on the sectioning of paper has not fully utilised the power of the light microscope. This paper describes techniques developed to enable the structure of paper to be seen in considerable detail in cross-section. The techniques are illustrated by sections of a wide range of types of paper. The consolidation of the structure of paper during manufacture is revealed by micrographs of the effects of beating, pressing, drying with and without restraint, super calendering and creping.
The scanning electron microscope has been used to observe changes in the structure of paper at different stages of pressing and drying.
In the first experiments, beaten kraft pulp handsheets were subjected to various pressing and drying treatments. The structure at the solids content achieved was stabilised by freezing and drying by sublimation under vacuum. Photo micrographs show the collapse of the fibres and consolidation of the paper structure during processing.
Samples of the web were obtained at positions from the wet end to the reel of operating kraft, bond and newsprint paper machines. As soon as the specimens were sampled, they were quickly frozen and later dried under vacuum in the laboratory.
The influence of water removal on the web and fibre structure by pressing and drying is illustrated. The relative importance of fibre conformity and fine material differs for the three paper grades. Under pressure, fibres are deformed plastically, particularly at crossing points and asperities. Collapse of fibres on removal of water from the lumen and the fibre walls by drying can usually be distinguished from that produced by mechanical pressure.
A description is given of experiments designed to substantiate some facets of the authors’ comprehensive theory of paper shrinkage and structure that was presented at the Oxford symposium. In particular, considerable evidence is presented in support of the basic concept in the theory-that is, the hypothesis of `adhesion before shrinkage’ of the constituent fibres. Examples are shown of a phenomenon that is the direct result of the latter process, termed necking of the fibres. Other factors important in the drying and shrinkage process are discussed.
The studies upon which this contribution is based were made to investigate the structure and properties of high stretch papers. Webs produced by compaction and by creping, the two main commercial processes, were examined by light microscopy and physical testing.
The micro photography shows a variety of web configurations found in crepe papers, including examples of wave formations, internal delamination and two sidedness. The characteristic fibre orientation and densification are illustrated by photo micrographs of webs taken before and after the compacting process.
The mechanical behaviour of high stretch papers is illustrated by typical stress/strain curves and a discussion of their behaviour during the process of straining.
After a review of the development of extensible papers, a description of the double-roll compacting process and its variables is given. Its principal feature is the venturi section formed in the nip between a rubber and a steel roll, between which the paper web passes in a semi-dry state. On running the rubber roll more slowly than the steel roll, the web will shrink in the machine-direction. Experiments on a pilot machine showed an increase in the compacting effect with increasing nip pressure and speed difference, though with certain limitations. When considering nip width and peripheral speed difference as primary variables, however, linear relationships with the paper properties were found. The nip width will vary with the nip pressure and rubber thickness and hardness.
The mechanism of double-roll compacting is considered to involve tangential forces, which move the rubber towards the back side of the nip, where it contracts, thereby shrinking the web. The structure of the resulting extensible paper was examined by photo micrographs of surface and cross-sections, by measuring the thickness changes on stretching and by load elongation measurements. The fibres appear curved after the compacting operation. This will result in the breaking of bonds when stretching the paper and in an ultimate breaking load lower than for flat kraft. The total rupture energy, however, is considerably higher.
An apparent increase in the rubber roll diameter on increasing nip pressure was observed. This will cause a decrease in the mean speed difference at the nip. At a limited set speed difference, the rubber roll was found to change from being driven to be driving on increasing the nip pressure. In an appendix, the nip width and the slip have been treated theoretically as well as experimentally.
- 1965
Cambridgepp 445-472Ultrasonic Impedometric Studies in the Cellulose Pulp/Water SystemAbstractPDFThe high frequency shear mechanical behaviour of cellulose pulp/ watersystems during theprocess of drying from 3 percent solids to total dryness has been non-destructively and continuously monitored by the technique of ultrasonic impedometry. Unusual fibre/water interactions have been detected at both extremes of the concentration range studied. These interactions are given interpretation in molecular terms.