NC State
BioResources
  • 2017
    Oxford
    pp 3-26Experimental and Numerical Verification of 3D FormingAbstractPDF

    Motivated by sustainability arguments there is a recent interest in forming of advanced structures in paper and paperboard. Therefore, in this paper, hydro-forming of papers and the effect of different fibre raw materials, beating, strength additives (PVAm), grammage and wet and dry papers have been investigated experimentally and numerically.
    The experiments were carried out in laboratory hydro-forming device. Softwood sheets performed better than hardwood sheets, since they had higher strain at break. The ability of paper to withstand hydro-forming successfully was primarily dependent of the strain at break of the paper in relation to the straining required to fill the mould. Forming of wet sheets were also investigated; overall the wet sheets formed better than the dry sheets, which was due to higher strain at break and lower elastic energy. Since the forming was displacement controlled, there was no significant difference in the effects of beating, amount of PVAm or grammage.
    Finite element modelling was performed to identify local strains and predict problematic regions. Simulations were also performed to determine how anisotropic sheets would behave, as well as to compare the process of hydro-forming with press-forming. The papers could be strained to higher strain levels than the measured strain at break because the paper is supported by the membrane and mould during the forming operation. The maximum strain a paper can withstand can be increased if the paper can slide into the mould, i.e. by having a lower coefficient of friction between the steel mould and the paperboard.
    During hydro-forming the paper is supported by a rubber membrane, which gives lower strain levels than the corresponding press-forming operation due to the difference in how the paper is deformed. Press-forming therefore required paper with higher strain at break. Higher friction results in more paper being pulled into the mould, which contributes to wrinkling of the paper. Simulation of tray forming of a creased sample was performed, which showed that high friction or compliant creases decreased the circumferential compression.

  • 2017
    Oxford
    pp 27-41A. Bugiel, F. Hähnel, K. Wolf, J. Strauß and T. KuntzschEnhanced Test Devices for the Development of Novel Paper-like Materials for Sandwich-StructuresAbstractPDF

    High performance sandwich components have a great significance in aerospace applications. Particularly, lightweight sandwich structures made of honeycomb or foldcores show excellent load carrying capabilities. Both types of cores are usually made of aramid paper coated with phenolic resin. Therefore, the development of improved paper-like materials seems to be a promising approach to improve the mechanical performance of this kind of cores. An essential part of this development process is the evaluation of the new materials by the complete characterisation of the mechanical properties. This is still a challenging task, since the resulting papers are orthotropic and most of the existing testing procedures and devices are not suitable for very thin sheet materials. This is particularly true for investigating stiffness and strength properties under compressive and shear loading.
    The paper presents a novel single-curved compression test device as well as an adapted shear-frame for the in-plane characterisation of very thin specimens. These devices have been applied in the development process of a new paper-like material that consists of three layers in order to increase the stiffness and strength of honeycomb- and foldcores. The performance of this material was evaluated by comparing relevant mechanical properties to that of state of the art paper materials. Based on the experimental results the benefits of the new paper-like material could be shown.

  • 2017
    Oxford
    pp 69-136Creasing and FoldingAbstractPDF

    NA

  • 2017
    Oxford
    pp 139-158Development of Cellulose Nanofibre Quality with Mechanical Energy: Effect of Starting MaterialAbstractPDF

    Energy efficient production of nanocellulose fibres is key to establishing this highly-promoted materials in an industrial scale. In this work, we attempt to explain how the mechanical energy input and the chemical composition of the raw materials affect the quality of nanofibres. Bleached eucalyptus Kraft (BEK) pulp, a commercially availble microfibrillated nanocellulose from cotton, and whitewater fines collected from a radiata pine thermomechanical pulping (TMP) mill were used to produce cellulose nanofibres. BEK was the most responsive to mechanical fibrillation due to low crystallinity and it produced high aspect ratio nanofibres, while TMP whitewater fines were the most difficult to process and resulted in low aspect ratio nanofibres. Nanofibres were then added to TMP newsprint to evaluate the effect on tnesile strength. Nanofibres produced from BEK were able to increase the tensile strength the most, while nanofibres from TMP whitewater fines had the least effect. The results showed that a high aspect ratio and a surface chemical composition favouring more hydrogen bonds i.e. pure cellulose, are the key criteria when selecting nanofibre for strength improvement in paper.

  • 2017
    Oxford
    pp 159-173The Effect of Fibrous Materials on the Rheology of Aqueous FoamsAbstractPDF

    We studied fully developed pipe flow of fibre-laden aqueous foams and decoupled their bulk rheological properties boundary effects like slippage at the pipe wall. The air volume fraction of the foams varied between 70% and 75%. The addition of hardwood fibres at the consistency 20 g/kg to plain aqueous foam increased viscosity more than 100%, while with microfibrillated cellulose at a consistency of 25 g/kg the increase was about 30%. The effect of synthetic (cellulosic)rayon fibres was negligible at the consistency of 20 g/kg. All the studied foams could be described as shear-thinning power-law fluids with significant slippage at the pipe wall by particles size and interactions between particles and bubbles.

  • 2017
    Oxford
    pp 175-194Refining Impulse Controls the Morphological Modifications of FibersAbstractPDF

    Considering the analogy between the pressing of a paper sheet and the refining of a pulp suspension, the refining impulse is introduced. For beaters, disc or conical refiners, whatever the running mode (continuous or batch), the refining impulse is found to be a controlling variable for the pulp properties, and consequently for the paper properties. In a Valley beater, different normal forces were applied. The SR evolution versus the refining impulse exhibits a unique curve whatever the experimental conditions. For disc and conical refiners, the refining impulse depends on the net power, the rotation speed, the bar width, or the average bar angle. A unique parameter is used to fit each set of trials to obtain a single curve of the SR evolution. This parameter corresponds to the global friction coefficient f. he fiber length and the swelling (WRV) depend also on the refining impulse. However, as in pressing theories, the applied pressure has also to be introduced as a complementary parameter. Consequently, the paper properties are shown to depend also on both the refining impulse and the applied pressure.

  • 2017
    Oxford
    pp 195-207A New Representation for Low Consistency Refining DataAbstractPDF

    The standard method of representing refining data is to plot fibre or sheet properties as a function of refiner Specific Energy Consumption (SEC), for separate refining trials done at different Specifics EDG Loads (SEL). This approach does not allow for refining outcomes to be predicted when refining at other values of SEL and does not allow for refining conditions to be optimized to satisfy multiple constraints. In addition, the change in fibre properties is determined by the number of impacts on a fibre and the energy used in each impact, while SEC is the product of number and energy used in each impact. The paper describes a new representation of refining data where the two axes of the plot are SEC/SEL, which is proportional to the number of impacts, and 1/SEL, which is proportional to the inverse of the energy used in each impact. Data from refining trials are then plotted as lines of equal value. The paper shows how flow and power limited for a low consistency refiner are represented on such a plot. The utility of the approach is demonstrated with refining data of a CTMP pulp with three different refining plates and three different speeds.

  • 2017
    Oxford
    pp 209-228Fractionation of Bifer Pulp in a Hydrodynamic Fractionation Device: Influence of Reynolds Number and Accept Flow RateAbstractPDF

    Fibre fractionation in the Hydrodynamic Fractionation Device (HDF) was studied for changing suspension flow parameters, i.e. different channel Reynolds numbers Re and accept flow rates up to 20% of the feed flow rate. The suspension flow behaviour was described using images recored with a high-speed camera system. Fractionation performance was determined based on mass balances for a variety of length fractions of the pulp. Low Reynolds number flow characterised by Re = 1300 led to the formation of a fluid gap between the wall and the fibres located at the chaneel centre. Best fractionation performance was achieved for flow at this Reynolds number: no fiber removal was observed at 10% accept flow rate, and only 1% of the fibres were removed at 20% accept flow rate. A design space was established that highlights the optimum settings for fractionation in an HDF, which at low Re and high accept flow rate. Surprisingly, we found a significant increase of fines mass flow rate in the accept upon an increase of the Reynolds number. We speculate that a flow regime-dependent interaction of fines with the fibres exists in the HDF that critically affects the amount of fines in the fluid gap near the wall.

  • 2017
    Oxford
    pp 231-254The Effect of Microfibrillated Cellulose on the Strength and Light Scattering of Highly Filled PapersAbstractPDF

    There has been much recent interest in the use of microfibrillated and nanofibrillated cellulose as additives to improve the mechanical properties of paper. Most of the original methods used to make these materials are to costly for this purpose, but now purely mechanical processed are becoming available which have been made it a more practical possibility. The tensile strength of unfilled paper and its relation to light scattering have been the subject of extensive theoretical and experimental research a, and the effect of addition of fibrillated cellulose have been considered by several authors in the light of this work. However, much less theoretical work have been dedicated to the properties of papers with high filler contents.
    In the FiberLean process, fibres are mixed with filler and found together until fibres are converted into microfibrillated cellulose, a few percent of which can be added to paper to increase its strength and allow a substantially higher filler content. We build on the work of Bown to develop a model for the effect of filler on paper tensile strength and light scattering, and use this to investigate mechanism by which mfc improves these in highly filled paper. We further demonstrate some of the advantages of its use over the conventional refining approach. There include process flexibility and some specific paper properties such as increased elasticity and higher resistance to tearing.

  • 2017
    Oxford
    pp 255-280Experimental Study of Filtration of Fiber Suspensions: Part I: Time-resolved Measurements of the Formation of a Fiber NetworkAbstractPDF

    We present a new laboratory apparatus designed to study the filtration of a fiber suspension in a parameter range close to that of the real papermaking process. An experimental procedure that combines index-of-refraction matching, high-speed imaging, and article Image Velocimetry (PIV) is used to measure glow and particles dynamics. In particular we presents results for: flow above a mesh similar to that used for paper forming; flow above and in the forming fiber network; evolution of the structure of the fiber network itself. Experiments are performed varying filtration velocity and fiber length. The results show that flow perturbations in the proximity of the mesh and the forming network are confined in a thin region and the height of this region are likely to scale with the pore size. Snapshot reveal qualitative difference between the networks formed by fibers of different lengths.