NC State
Yang, G., Wang, C., Lyu, G., Lucia, L. A., and Chen, J. (2015). "Catalysis of glucose to 5-hydroxymethylfurfural using Sn-beta zeolites and a Brønsted acid in biphasic systems," BioRes. 10(3), 5863-5875.


Selective and efficient dehydration of glucose to 5-hydroxymethylfurfural (HMF) has been a widely explored concept recently, especially from the perspective of employing environmentally benign heterogeneous catalysts. However, there has been a relative paucity of data regarding the application of Sn-Beta zeolites, a category of catalysts that are very innocuous, inexpensive, and effective, toward evaluating bio-based conversions. Sn-Beta was shown to possess good Lewis acidity for catalyzing glucose isomerization to fructose in aqueous media at low pH and accelerating dehydration of glucose to HMF in a biphasic system with high yields. Sn-Beta zeolite with NH4F as the mineralizing agent (Sn-Beta-F) was a more effective catalyst for the selective dehydration of glucose to HMF. An optimal HMF yield of 53.0% was obtained over Sn-Beta-F zeolite in an acidic environment (pH 1) after 70 min at 190 °C. The reaction system was also effective for conversion of cellulose to HMF with a yield of 32.2% preliminarily.
Download PDF