NC State
Bian, H., Li, G., Jiao, L., Yu, Z., and Dai, H. (2016). "Enzyme-assisted mechanical fibrillation of bleached spruce kraft pulp to produce well-dispersed and uniform-sized cellulose nanofibrils," BioRes. 11(4), 10483-10496.


Cellulose nanofibrils, as a bionanomaterial with many promising properties, have great potential in composite applications. Herein, well-dispersed and uniform-sized cellulose nanofibrils (CNF) was successfully obtained from commercial bleached softwood kraft pulp, with yields of 79.15% via enzyme-assisted hydrolysis and a subsequent homogenization process. Field emission scanning electron microscope (FE-SEM) confirmed the fiber morphology. Water retention value (WRV) was increased from 107.32% of original pulp to 1383.92% of the resulting CNFs, while crystallinity had no significant changes. Fourier transform infrared (FTIR) spectroscopy indicated the addition of enzyme resulted in the removal of hemicelluloses and lignin. CNFs subjected to enzymatic treatment and homogenization had less entangled network, larger aspect ratio and higher transmittance than those from pure mechanical treatment. They exhibited well-dispersed in aqueous solution and uniform-sized in morphology. These advantages revealed enzyme-assisted process had a remarkable effect on the production of CNFs and made CNFs attractive for nanotechnology and nanomaterial.

Download PDF