NC State
BioResources
Najafi, A., and Khademi-Eslam, H. (2011). "Lignocellulosic filler/recycled HDPE composites: Effect of filler type of physical and flexural properties," BioRes. 6(3), 2411-2424.

Abstract

The aim of the research was to study the potential of lignocellulosic fillers such as flour of rice hull, wood saw dust, sanding flour from Medium Density Fiberboard (MDF), and sawdust from particleboard as reinforcement for recycled high density polyethylene. Natural filler HDPE composites were made from recycled HDPE and lignocellulosic fillers at 60% by weight filler loadings using a dry blend/hot press method. In all compounds 3 per hundred compound (phc) Maleic Anhydride Polyethylene (MAPE) was used. Nominal density and dimensions of the panels were 1g/cm3 and 35×35×1 cm. Physical properties of panels including short and long-term of water absorption and thickness swelling and mechanical properties, including flexural modulus, flexural strength, strain at yield, and energy to yield point were studied. Composites containing sanding flour from MDF showed higher short-term values of water absorption and thickness swelling. For the long term, such as maximum values of water absorption and thickness swelling and diffusion coefficient, composites including wood sawdust showed higher values, and composites contain rice hulls exhibited the lowest values. In addition, composites made from sanding flour from MDF showed high value of the swelling rate parameter. Water absorption behavior of studied composites followed Fick's model. The flexural properties of composites were investigated with reference to the effect of filler type. Composites containing sanding flour from MDF and particleboard sawdust exhibited better flexural properties than others and composites containing wood sawdust showed the lowest values.
Download PDF