NC State
He, X., Wang, D., Zhang, Y., and Tang, Y. (2016). "Manufacturing technology and parameter optimization for composite board from corn stalk rinds," BioRes. 11(2), 4564-4578.


To improve the bonding strength between adhesive and enhance the performance of composite board made from corn stalk rinds, a method for preparing three-layer composite boards was proposed. Accordingly, corn stalk rinds with the epidermis removed, were used as the core layer, while crushed aggregates from the epidermis were used as the surface layer of the composite board. Single-factor and orthogonal experiments were conducted to analyze the effects of the sampling height of corn stalk rinds, the surface layer proportions, and the hot-pressing temperature and time on the physico-mechanical properties of composite board. The resulting composite board from corn stalk rinds showed enhanced properties, except for the internal bond strength (P < 0.01). The physical properties of the composite board were significantly improved (P < 0.01) by removing the crushed aggregates of the epidermis, forming a single layer of composite board. The optimal parameters were as follows: the sampling height below the ear part of the corn stalk rinds; 12% surface layers; 150 °C hot-pressing temperature; and 6 min time. Under these conditions, the physico-mechanical properties of the composite board met the requirement level for particleboard. This research supports the use of corn stalk rinds as composite boards.
Download PDF