Abstract
The aim of the present investigation was to characterize a xylanase-producing Fusarium solani isolate and to optimize cultural conditions for xylanase enzyme production from free and immobilized cells. Screening of Fusarium solani isolate was based on the diameter of the clear zone formation in oat spelt xylan agar plates. Fusarium solani isolate F7 was selected and optimized for xylanase enzyme production using cheaper substrates such as wheat straw, rice straw, rice bran, and wood husk. Maximum enzyme activity was observed in wheat straw (78.32 U ml-1 for free cells and 94.68 U ml-1 for immobilized cells). Optimum pH and temperature for xylanase activity were found to be 5.5 and 30°C at 3% substrate concentration for free cells and 5.0 and 30°C at 3% substrate concentration for immobilized cells. In the purification step, 75% ammonium sulphate saturation was found to be suitable, giving maximum xylanase activity. Production of xylanase was greater from immobilized cells than from free cells. Purified xylanase from free cells yielded a single band with a molecular weight of 89kDa, while it was 92.8kDa for immobilized cells. The use of wheat straw as a major carbon source is particularly valuable, because oat spelt xylan is very expensive. The Fusarium solani F7 isolate proved to be a promising microorganism for xylanase production.Download PDF