NC State
BioResources
Popil, R. E. (2012). "Overview of recent studies at IPST on corrugated board edge compression strength: Testing methods and effects of interflute buckling," BioRes. 7(2), 2553-2581.

Abstract

Several recent series of investigations were conducted on corrugated board performance in the areas of: loaded container endurance in cyclic humidity, predictive models for edge compression strength (ECT), effects of lightweight facings, measurement of transverse shear rigidity, effects of adhesive level, and out-of-plane crushing on ECT. The course of this program prompted exploration and review of several aspects of ECT testing methods: specimen height, test duration, and fixture-clamping effects. In this review, ECT values are shown to be influenced by the combination of the selected testing technique with the specific structural and strength characteristics of the board being tested. The effect of specimen height on selected single wall C-, E-, F-, and N-flute boards is measured and rationalized using a simplified beam-theory approach. Apparent loss of ECT in a C-flute crushed board is explored to determine whether mitigation is possible by selection or modification of testing method. Investigations of platen speed effects on C-flute substantiate previous work. Lightweight facings on A- and C-flute corrugated boards are observed to display localized buckling, which affects the ECT value. An analytical model that combines the measured bending stiffness of the facings and the compression strengths of the fluting and facings provides an improved predictive accuracy and is applied to a series of laboratory and commercial corrugated boards.
Download PDF