NC State
BioResources
Wang, X., Hagman, O., Sundqvist, B., Ormarsson, S., Wan, H., and Niemz, P. (2016). "Shear strength of Scots pine wood and glued joints in a cold climate," BioRes. 11(1), 944-956.

Abstract

The impact of cold temperatures on the shear strength of Scots pine (Pinus sylvestris) joints glued with seven commercially available adhesives was studied in this work. The cold temperatures investigated were: 20, −20, −30, −40, and −50 °C. Generally, within the temperature test range, the shear strength of Scots pine solid wood and wood joints were more resistant to the effect of temperature than those of Norway spruce. As the temperature decreased, only some of the joints’ shear strength significantly decreased. In most cases, PUR adhesive yielded the strongest shear strength and MUF adhesive yielded the weakest shear strength. MF adhesive responded to temperature changes in a similar manner to that of PUR and PVAc adhesives. The shear strengths of wood joints with PRF and EPI adhesives were more sensitive to temperature change. For dynamic tests of shear strength, the values for 12-h and 6-day tests under temperature cycles (−20 and 0 °C) were compared. The values for 6-day tests were lower than those for 12-h tests. Therefore, the duration of the samples subjected to the same temperature had a significant impact on shear strength. Our results indicate that PUR adhesive is the most stable; whereas the stability of MUF and PRF adhesives decreased significantly.
Download PDF