NC State
Yang, X., Gong, M., and Chui, Y. H. (2014). "Short-term creep behavior of CFRP-reinforced wood composites subjected to cyclic loading at different climate conditions," BioRes. 9(2), 1845-1857.


Carbon fiber reinforced plastic (CFRP) was used to adhesively reinforce Chinese fir (Cunninghamialanceolata) wood specimens. This study examined the flexural static and creep performances of CFPR-reinforced wood composites that had been subjected to changes in moisture and stress levels. The major findings were as follows: 1) the cyclic creep was slightly lower for those specimens subjected to the cyclic stress condition than for those subjected to a constant stress level due to the deflection recovery under cyclic loading; 2) the environmental conditions of high temperature and high humidity assisted in accelerating the creep by increasing the moisture content of the composite and reducing the compressive strength of wood, causing the composite specimen to fail viadamage in the wood layer from compressive crushing; 3) the stress level governed the creep of the CFRP-reinforced wood composite; and 4) the Burger model was able to accurately simulate the short-term creep performance of the CFPR-reinforced wood composite. It was suggested the maximum bending stress level should be limited to 40% for the CFRP-reinforced wood composites fabricated in this study.
Download PDF