NC State
Gaff, M., Gašparík, M., Borůvka, V., and Babiak, M. (2015). "Simulating stresses associated with the bending of wood using a finite element method," BioRes. 10(2), 2009-2019.


This article examines the stress-strain curves of various thicknesses of soft and hard wood when bent during three-point loading. The finite element method was used to simulate the course of stresses that occurred during the bending of these materials. Reference curves obtained by bending real specimens offered a basis for simulation. The results showed that with increasing material thickness, deflection values decreased and the proportionality limit increased; eventually, the bendability coefficient value decreased and the loading force necessary for bending increased. Moreover, it was apparent when bending hard materials that higher loading forces were necessary for different materials of the same thickness. It is possible to determine the stress-strain curves without having to perform experiments (except for indispensable reference ones) under real conditions.
Download PDF