NC State
Wu, S., Jameel, H., Chang, H. M., and Phillips, R. (2014). "Techno-economic analysis of the optimum softwood lignin content for the production of bioethanol in a repurposed kraft mill," BioRes. 9(4), 6817-6830.


Kraft pulping is one possible pretreatment for softwood to economically produce bioethanol. This work evaluates the techno-economic potential of using the kraft process for producing bioethanol from softwoods in a repurposed or co-located kraft mill. Pretreated loblolly pine was enzymatically hydrolyzed at low enzyme dosages of 5 and 10 FPU/g of substrate. Pretreated residue with 13% lignin content had the highest sugar recovery, 32.7% and 47.7% at 5 and 10 FPU/g, respectively. The pretreated residues were oxygen delignified and refined. In all cases, oxygen delignification improved sugar recovery, while refining was mostly effective for pulps with high lignin content. At 5 FPU/g, the sugar recovery for all kraft pulps was 51 to 53% with oxygen delignification and refining. Increasing the enzyme dosage to 10 FPU/g increased the sugar recovery for these pulps to greater than 60%. Economic analysis for the pulps with different initial lignin content showed that kraft pulps with an initial lignin content of 6.7% with oxygen delignification had an ethanol yield of 285 L/ODt wood and the lowest total production cost of $0.55/L. Pulps with initial lignin content of 18.6% had a total production cost of $0.64/L with an ethanol yield of 264 L/ODt wood.
Download PDF