NC State
BioResources
S. Östlund. Three-dimensional deformation and damage mechanisms in forming of advanced structures in paper. In Advances in Pulp and Paper Research, Oxford 2017, Trans. of the XVIth Fund. Res. Symp. Oxford, 2017, (W.Batchelor and D.Söderberg, eds), pp 489–594, FRC, Manchester, 2018.

Abstract

There is a large potential for wood-fiber based materials such as paper and board to contribute to lightweight structures in several applications, particularly packaging. Fiber-based packaging materials have important advantages in comparison to fossil-based plastics regarding biodegradability, recyclability and renewability. Individualisation has become a crucial criterion for the use of packaging solutions and forming of advanced paperboard structure is a key technology for manufacturing of such packaging shapes. New sustainable packaging concepts are creating a need for paper materials with considerably enhanced properties.

Paper and board are in manufacturing of geometrically advances structures in general subjected to complex and often little known multi-axial states of loading and deformation that are necessarily quantified by conventional measures for paper performance. Today, commercial paperboard is optimised for folding and printing, and not for applications involving forming of advanced structures. It is like-wise important to design the manufacturing process to meet the particular properties of paperboard. Manufacturing methods that are suitable for metals and plastics are inevitably not suitable for paper and board since the deformation and damage mechanisms of fibre network materials are different from metals and plastics.

In this paper recent findings in the literature on 3D forming of paper and paperboard structures are reviewed. In particular, deformation and damage mechanisms involved in pertinent forming operations and how they are related to paper and board properties in order to enhance the development of new advanced paper materials and structure are analysed.

In the last decade, there have been major advancements in the development of geometrically advanced 3D paperboard structures including technological advances of various forming process, enriched understanding of the importance and influence of process parameters, and new paperboard materials with significant improved forming properties. However, there is still a lack of knowledge regarding the deformation mechanisms of these complex systems and particularly regarding the influence of friction. One remedy would be the enhancement of numerical simulation tools. Optimisation of existing forming processes and development of new ones as well as tailored paper and board materials with properties customised to the demands of exiting and new 3D forming processes will also play important roles. This development is only in its beginning and major progress is expected in the near future.


Download PDF