NC State
BioResources
  • Editorialpp 6904-6906Hubbe, M. (2017). "To repair or not to repair cracked wood," BioRes. 12(4), 6904-6906.AbstractArticlePDF

    If only wood could be defect-free, then the minimum strength of solid-wood beams and other structures could be much higher. Structural failures could be avoided, and-or less material might be required in some applications. Cracks in wooden structures can be filled with adhesives or with thermoplastic composite material. But to approach the intended strength of defect-free wood, it is necessary to use other strategies such as glued rods and surface patches. The ultimate answer may lie in better species selection, tree breeding, forestry strategies, lumber cutting practices, and lumber drying practices to avoid cracks in the first place.

  • Editorialpp 1-2Wang, P., Qian, X., and Shen, J. (2018). "Superhydrophobic coatings with edible biowaxes for reducing or eliminating liquid residues of foods and drinks in containers," BioRes. 13(1), 1-2.AbstractArticlePDF

    Biowaxes, including carnauba wax and beeswax, are edible and renewable. Once dispersed in a polar solvent, these natural materials could be easily converted into nontoxic, “roll-off”, and superhydrophobic coatings on the basis of spray coating. The combination of container materials with these coatings can reduce or even eliminate liquid resides (including highly viscous residues) of foods and drinks in containers (e.g., bottles), significantly facilitating downstream operations. Comprehensive demonstrations of this green concept would generate huge opportunities for food/drink-related industries.

  • Editorialpp 3-5Zhu, S., Yang, M., Luo, F., Yang, X., and Xue, Y. (2018). "Engineering cell wall-degrading enzymes into growing plants to improve lignocellulosic ethanol production," BioRes. 13(1), 3-5.AbstractArticlePDF

    The plant cell wall (PCW) represents the most abundant renewable biomass resource for lignocellulosic ethanol production. Economical and efficient degradation of PCW to fermentable sugars is an essential sub-process during lignocellulosic ethanol production. At present, the recalcitrance of PCW to various pretreatments and enzymatic hydrolysis makes the PCW degradation unacceptably expensive. Engineering cell wall-degrading enzymes into growing plants provides a promising solution to lower the PCW degradation cost and increase its degradation efficiency for lignocellulosic ethanol production. Avoiding damage by the expressed biomass-degrading enzymes to growing plants is the key to successful use of this method. Two modern biological technologies can be used to solve this problem. One is to engineer a thermoregulated intein-modified cell wall-degrading enzyme into growing plants. The other is to use the gene-timed expression technique. This editorial will give a brief discussion of opportunities and challenges of engineering cell wall-degrading enzymes into growing plants for improvement of lignocellulosic ethanol production.

  • Editorialpp 2182-2183Laleicke, P. (2018). "Wood waste, the challenges of communication and innovation," BioRes. 13(2), 2182-2183.AbstractArticlePDF

    Wood is our material of choice for sustainable and environmental friendly construction and manufacturing of products. Wood has excellent properties for reuse, realized and implemented through a cascading utilization, introducing intermittent product lives. In contrast, wood waste is still a heavily under-valued resource in North America. With current practices of sourcing virgin wood at lowest cost and few efforts to shift wood out of the single-use convenience mode of utilization, true innovation is unlikely to occur. Technical problems have been assessed and solved. What remains is collecting and combining unintelligently scattered and hidden information about wood utilization into a single place. And, if connecting a complimentary feedstock supply to our current industries remains a challenge, then innovation must happen on the product-side too.

  • Editorialpp 2184-2186Chen, Z., Zhang, L., and He, Z. (2018). "Rethinking the determination of wet strength of paper," BioRes. 13(2), 2184-2186.AbstractArticlePDF

    The wet strength of paper is an important physical property, especially for household paper, e.g., paper towels, as well as for some functional paper grades. However, in the literature, various conditions of immersing the samples in water before testing have been reported, resulting in differences in their extent of saturation and inconsistency in the testing results. Also, the dryness of paper specimens before the wet-strength testing is a critical parameter for the wet strength of paper; however, this aspect has been neglected in the literature. In this editorial, the methods of examination for both the temporary and permanent wet strength are discussed. A more reasonable method is proposed, such that the wet strength is reported according to the immersion time and the initial dryness of the paper. As an option, the results may be expressed as a function of immersion time and initial dryness. In this way, the trend of temporary wet strength related to the immersion time in water can be expressed clearly and the permanent wet strength also can be evaluated comprehensively.

  • Editorialpp 4770-4772Song, S., Wang, P., and Zhang, M. (2018). "Filler bondability factor as a tool for maximizing the potential of mineral additives in paper production," BioRes. 13(3), 4770-4772.AbstractArticlePDF

    Increasing filler content in paper while maintaining paper strength is a continuous need in the paper industry. The bonds between cellulosic fibers and fillers are essential to increase filler level in paper. Besides tensile strength, which traditionally has been used to investigate different fillers on fiber bonding, a new factor, i.e. a filler bondability factor, can be applied in evaluating the mitigation effect of filler addition on fiber bonding. This factor shows its effectiveness in optimizing the key parameters for filler modification and the choice of filler, and it helps to maximize the use of filler in the paper industry.

  • Editorialpp 4773-4775Chen, Z., Yue, X., He, Z., and Zhang, L. (2018). "China’s new regulations on waste paper importing and their impacts on global waste paper recycling and the papermaking industry in China," BioRes. 13(3), 4773-4775.AbstractArticlePDF

    China is the largest waste paper importing market in the world. Due to more and more demands and awareness of environment/ safety issues, in recent years the Chinese government has implemented a number of new regulations on waste paper importing, for example, prohibiting importing of unsorted waste paper and lowering the foreign (non-paper) content in the imported waste paper from 1.5% to 0.5%. Small-scale (less than 50,000 tons per year capacity) paper mills are not eligible for importing waste paper. These new regulations have had profound impacts on the global waste paper recycling practice and the papermaking industry in China. At the same time, these new regulations bring up new challenges to the global waste paper recycling practices, such as increased labor costs and decreased recycling efficiency.

  • Editorialpp 7172-7174Khider, T. O., and Hubbe, M. A. (2018). "Towards rational utilization of indigenous plant resources," BioRes. 13(4), 7172-7174.AbstractArticlePDF

    The world has huge floral diversity, whereas there often is poor and irrational utilization, especially of indigenous plants and residues from agricultural processes. Trees, shrubs, and herbs can have multiple uses at different levels as medicines and sources of lignocellulosic materials. A fuller and more rational utilization is needed, with interaction of international and national communities, to raise the awareness of local people, governments, and industrial entrepreneurs of the floral wealth that is waiting to be utilized more effectively.

  • Editorialpp 1-2Hubbe, M. (2019). "BioResources to serve as host for Fundamental Research Symposia archives," BioRes. 14(1), 1-2.AbstractArticlePDF

    The Fundamental Research Committee (FRC), founded in 1956 to organize regular symposia among pulp and paper scientists, has been aiming to widen access to their archival published proceedings.  The FRC decided that it would be best to make their published work freely available on the web rather than continuing to offer CD versions for sale.  They wanted to work together with an entity having experience with open access publishing.  The FRC has selected BioResources as that entity, based on our 13-year record of open access service to the same branch of science and technology.  BioResources is honored to take on this role and accordingly will henceforth prominently list the “Fundamental Research Symposia Archives” on our web page with links to the FRC content.

  • Editorialpp 3-5Chen, Z., Zhang, H., He, Z., Zhang, L., and Yue, X. (2019). "Bamboo as an emerging resource for worldwide pulping and papermaking," BioRes. 14(1), 3-5.AbstractArticlePDF

    As a widely distributed and fast growing graminaceous plant, bamboo has emerged as an important raw material for pulping and papermaking to mitigate the shortage of wood resources, at least in the East Asia region. New technologies such as silicon removal have been developed to overcome the disadvantage of bamboo as a pulping raw material, as well as to improve the quality of bamboo pulp products. The bamboo pulping capacity in China is continuing to increase in the near future.

@BioResJournal

54 years ago

Read More