NC State
BioResources
  • Editorialpp 2458-2459Vasara, P., Pongpiriyakan, P., Nyman, T., Lehtinen, H., Aktüre, I., and Laukkanen, O. (2019). "Curing our addiction to fossil and nonbiodegradable plastics: Steps ahead," BioRes. 14(2), 2458-2459.AbstractArticlePDF

    We are suffering from a global plastic addiction. Ways to curb it include the decreasing of plastic end uses and substituting fossil and non-biodegradable plastics with more sustainable alternatives such as bioplastics, cellulosic fibre-based solutions, and recycled plastics. We have the problem of choice: among hundreds of plastic end uses and potential substitutes, how do we pick the best options for each case – financially, socially, and environmentally? How do we support companies, authorities, and consumers with extensive knowledge encapsulated in advanced yet usable decision support? Answers may lie in data mining as a basis.

  • Editorialpp 2460-2464Pal, L., and Lucia, L. A. (2019). "Renaissance of industrial hemp: A miracle crop for a multitude of products," BioRes. 14(2), 2460-2464.AbstractArticlePDF

    The US, which historically has been a major producer of hemp, has recently reintroduced industrial hemp production. The idea is to provide agriculture and farming communities with new economic opportunities (2018 Farm Bill) to replace lost income from formerly more profitable cash crops such as tobacco. Industrial hemp is a scalable crop that could provide significant economic and environmental benefits; however, the true valorization of industrial hemp will hinge on significant innovation and the development of high-value applications. Utilization of the whole hemp plant may be the key to attaining economic, environmental, and social sustainability. Further, strong community outreach and education is required to overcome the stigma attached with industrial hemp due to its morphological and genetic similarities to its psychoactive-rich (> 0.3% tetrahydrocannabinols (THC)) analogue. This editorial identifies critical research, educational, and community outreach platforms to develop a robust US industrial hemp program, with a goal to enable the renaissance of this miracle crop. Collaboration of the forest sector, universities, and industries is urged for the establishment of a center or consortium that fosters the future advances amongst more productive hemp cultivars, local farming practices, and bioproducts development for economic outlets for this miracle crop.

  • Editorialpp 2465-2467Qiu, H., Xu, J., He, Z., Long, L., and Yue, X. (2019). "Bamboo as an emerging source of raw material for household and building products," BioRes. 14(2), 2465-2467.AbstractArticlePDF

    Bamboo is a category of fast-growing and widely distributed perennials having unique physical and mechanical properties. The mechanical properties of bamboo are often higher (typically by two to three times) than those of conventional timbers, and it has become a very important raw material for the household/ building industries. Bamboo has been commercially used for the production of indoor and outdoor floors, furniture, and structural timber for building. Some performance defects/ drawbacks of bamboo have been effectively remedied, due to the new technologies, such as bamboo scrimber, which facilitates the market penetration/ acceptance of bamboo-based household and building products.

  • Editorialpp 2468-2471Kovalcik, A., Obruca, S., Fritz, I., and Marova, I. (2019). "Polyhydroxyalkanoates: Their importance and future," BioRes. 14(2), 2468-2471.AbstractArticlePDF

    This editorial considers biosynthesis of polyhydroxyalkanoates (PHA), polymer processing of PHA, and the use of PHA in production of bioplastics or biocomposites. The views come from a workshop aimed to join students and experts working with PHA or those interested in the application of biopolymers. The goals are 1) to synchronize their opinions with up-to-date knowledge published in the literature within the last 10 years, and 2) to formulate perspectives and conclusions.

  • Editorialpp 5016-5017Olendorf, R. K. (2019). "Toward a more open, trusted, and efficient research environment," BioRes. 14(3), 5016-5017.AbstractArticlePDF

    Open science is becoming increasingly popular. Both funders and publishers require data be made public. The goal is to make research easier to validate, more trusted, and to hasten the speed of discovery. However, due to lack of training, lack of resources and lack of time, researchers often fail to make much of the content they generate public, and they also fail to adequately document and organize it. Here I make an argument that researchers should try to make all their research content public. I briefly describe best practices that should both result in a better product and be less burdensome on the researcher. I also argue that if done properly, opening up their research can have multiple benefits for the research and their career.

  • Editorialpp 5018-5021Cao, D., Zhang, B., Yang, M., Luo, F., Yang, X., and Zhu, S. (2019). "Use of single atom catalysis for improvement of lignocellulosic conversion," BioRes. 14(3), 5018-5021.AbstractArticlePDF

    Economical and efficient transformation of lignocellulosic biomass into fuels, chemicals, and materials has drawn much attention in recent years. Catalytic chemical conversion is one of the most widely used technical ways in lignocellulosic transformation because of its high efficiency. However, the traditional chemical conversion is often carried out at high temperatures and large amounts of byproducts are formed during the conversion process. This is due in part because the used catalyst has low activity, selectivity, and stability. This causes the traditional chemical conversion process to have a high cost and to encounter difficulty in industrialization. The single atom catalysis approach provides a promising solution to improve the traditional chemical conversion process and decrease its process cost. Compared with the traditional catalyst, the single atom catalyst has not only lower cost but also higher activity, selectivity, and stability. It is becoming a new frontier in lignocellulosic conversion. This editorial will give a brief discussion about opportunities and challenges of using single atom catalysis for improvement of the lignocellulosic conversion.

  • Editorialpp 5022-5024Rogers, J. (2019). "The use of social media and its impact for research," BioRes. 14(3), 5022-5024.AbstractArticlePDF

    Social media is an omnipresent part of everyday life. It provides users with an easy way to engage and connect with others without meeting face-to-face. This form of communication provides a lot of opportunity for companies and individuals to reach a massive audience. What is the purpose of social media, and how does it tie into science? Well, you see, it all depends on who you know and how active your social media presence is. Is there a benefit for sharing research across social media? The benefits of social media stem from active participation and the generation of new attractive content from an individual. Research is about producing new information, and social media offers unique opportunities to present new content.

  • Editorialpp 7627-7629Chen, Z., Zhang, H., He, Z., and Zhang, L. (2019). "Current and future markets of dissolving pulp in China and other countries," BioRes. 14(4), 7627-7629.AbstractArticlePDF

    As a purified form of cellulosic fiber, dissolving pulp is an important starting material for many value-added cellulose products. Dissolving pulp is mainly produced by either the pre-hydrolysis kraft (PHK) process or the acid sulfite (AS) process. The dissolving pulp market has been booming in many developing countries in recent years. As one of the biggest producers of dissolving pulp in the world, China is also importing a large amount of dissolving pulp from other countries. It is expected that the production capacity of dissolving pulp in China will increase significantly in the near future.

  • Editorialpp 7630-7631Hubbe, M. A. (2019). "Why, after all, are chitosan films hydrophobic?" BioRes. 14(4), 7630-7631.AbstractArticlePDF

    Chitosan has a molecular structure very similar to that of cellulose, except that one of the –OH groups on each repeating unit (at the C2 position) is replaced by an amine group. Since chitosan has abundant water-loving groups and is soluble in weakly acidic aqueous solution, one might expect films prepared from casting of chitosan solutions to be hydrophilic. Experiments have shown wide variability, often indicating a hydrophobic character of the chitosan films. A 2008 article by Cunha et al. presented evidence suggesting that the apparent hydrophobicity was attributable to impurities. However, not all the evidence was consistent. In particular, extraction of chitosan film with methanol failed to increase the polar component of surface free energy. It is proposed in this editorial that the explanation can be found in a differing water-affinity of chitosan polymer segments, depending on their orientation. This explanation, if valid, is consistent with differences in the hydrophilic or hydrophilic character of different crystalline faces of cellulose.

  • Editorialpp 7632-7635Lu, X. (2019). "Cellulose nanocrystals for wrinkled fabric," BioRes. 14(4), 7632-7635.AbstractArticlePDF

    Although wrinkling is not appreciated in some of its manifestations, there are other instances for which it is essential to study and comprehend various physical phenomena related to wrinkling. Cellulose nanocrystals (CNCs) have some excellent intrinsic properties, i.e., high aspect ratio, percolation function, and good mechanical strength that have potential to affect wrinkling. Since the production period of bacterial cellulose is longer, it is efficient to use CNC as a substitute for bacterial cellulose in such applications. The network structure of bacterial cellulose can be mimicked by CNC fabric, which comprises several wrinkled CNC layers.

@BioResJournal

54 years ago

Read More