NC State
BioResources
  • Editorialpp 1-2Hubbe, M. A. (2020). "Saving the planet: What is the role of biomass?" BioRes. 15(1), 1-2.AbstractArticlePDF

    Scientists predict continuing increases in average global temperatures. Consequences include sea level rise, shifts in agriculture, and severe stress on many species, including our own. Can biomass be used to mitigate climate change? It is proposed in this essay that the answer is “yes, but”. Yes, trees and other plants will continue to serve as “the lungs of the planet,” converting CO2 to O2 by photosynthesis. But saving the world will not be easy. Biomass scientists will not be able to solve the problems alone. Rather, mitigation of problems related to climate change will require parallel efforts. We will need to get energy also from the sun, from wind, from water, from improvements in efficiency, and from societies learning to live peaceably, while showing restraint regarding jet travel.

  • Editorialpp 3-5Ma, Q., Lu, X., and Chen, Z. (2020). "Could aerogels from lignin-containing forest materials be used for cushioning in packaging systems?" BioRes. 15(1), 3-5.AbstractArticlePDF

    Cushioning materials are commonly used in packaging systems for storage and transport to provide support and to minimize damage from impact forces generated during sudden contact. For instance, they play an essential role in reducing losses from the orchard to the consumer. A 2009 article by Chen et al. reported on three alkali-based softening treatments to reduce the content of lignin and hemicellulose of cylindrical luffa to present a cushioning mattress. Notably, better comprehensive strength and recovery ability were obtained when the porous sample contained a moderate amount of lignin and hemicellulose. As a promising porous material, aerogels have favorable properties such as high surface area, low density, light weight, and high porosity with a three dimensional (3D) network, which have attracted much attention. In the process to prepare such an “aerogel from natural forest” (AFNF) materials, researchers typically have removed most of the lignin and hemicellulose to obtain ultralight AFNF with a high crystallinity index. So, taking inspiration from the cylindrical luffa study, it is proposed here that AFNF be used as cushioning material for packaging, and that the optimum lignin content might be much higher than previously envisioned.

  • Editorialpp 2111-2113Lv, P., Lu, X., Zhou, H., and Sun, X. (2020). "Biosynthesis of bacterial cellulose for in-situ assembly of intelligent packaging with natural dyes," BioRes. 15(2), 2111-2113.AbstractArticlePDF

    Natural materials such as wood, bone, and skin continue to command the respect and admiration of materials scientists. It is difficult to achieve comparable properties by the use conventional industrial manufacturing processes. In this essay we are proposing a radical approach to the preparation of future intelligent packaging materials. Rather than attempting to assemble the chemical components at a nano-scale to make an intelligent package, our proposal is to let life itself take care of much of the assembly. We propose that the natural growth of bacterial cellulose can be used as a way to prepare a well-integrated structure at the nano-scale. Additives such as natural dyes can be introduced already during biosynthesis and thus become well integrated with the packaging material from the start. For example, one can develop a smart label for pH monitoring based on bacterial cellulose doped with natural dyes extracted from natural byproducts by in situ biosynthesis of cellulose. The resulting film has potential to be used as a visual indicator of the pH variations during storage of packaged food.

  • Editorialpp 2114-2116Wan, J., Qian, X., Zhang, M., Song, S., and Shen, J. (2020). "Edible additives & cellulosic paper," BioRes. 15(2), 2114-2116.AbstractArticlePDF

    Assembly of biofibers into paper-based products fits well into green chemistry principles. Biobased additives such as cationic starch and carboxymethyl cellulose are widely used in the paper industry. Edible additives, which often can be regarded as “safer” than regular biobased additives, may also play a role in tailorable design of paper-based products.

  • Editorialpp 2117-2118Song, S., Wu, Z., and Nie, J. (2020). "Paper fillers innovations: From design of particles to preparing filler composites," BioRes. 15(2), 2117-2118.AbstractArticlePDF

    The increase of filler content in paper is an effective way to reduce production costs and to promote the market competitiveness of paper mills. A shift from natural fillers to synthetic fillers has enabled improvements in the critical properties of paper. Meanwhile, innovations from single particles of filler to filler composites has made it possible to increase the filler content of paper. Among various filler innovations, the design of fiber/filler composites has aroused general attention from industry and academic researchers. However, concerns related to the cost and recyclability of composite fillers remain to be addressed.

  • Editorialpp 4636-4637de Clerck, P. (2020). "Alkaline sizing – Have we got it wrong?" BioRes. 15(3), 4636-4637.AbstractArticlePDF

    Many words have been written regarding alkaline sizing of paper. The learned works often launch directly into cellulose-size reactions. Starch – a carbohydrate with a similar surface chemistry to cellulose – rarely features in the considerations. Yet the contact of size with the starch may be far more intimate and extensive than the contact with cellulose. It is suggested that the reaction of the size with starch is an important and overlooked contribution to our understanding of sizing.

  • Editorialpp 4638-4641Liu, K., Wang, H., Liu, H., Nie, S., Du, H., and Si, C. (2020). "COVID-19: Challenges and perspectives for the pulp and paper industry worldwide," BioRes. 15(3), 4638-4641.AbstractArticlePDF

    The outbreak of coronavirus disease 2019 (COVID-19) has made a huge impact on the global industrial supply chains. Undoubtedly, COVID-19 is posing severe challenges to the pulp and paper industry worldwide. On the other hand, this pandemic may provide unprecedented possibilities for the pulp and paper manufacturers in areas such as the increasing demand for personal hygiene paper products, food packaging products, corrugated packaging materials, medical specialty papers, etc.

  • Editorialpp 4642-4645McGavin, R. L., Dakin, T., and Shanks, J. (2020). "Mass-timber construction in Australia: Is CLT the only answer?" BioRes. 15(3), 4642-4645.AbstractArticlePDF

    Wood-based mass-panels (WBMP) are emerging as an attractive construction product for large-scale residential and commercial construction. Australia is following the lead of Europe and North America with several recent projects being completed using predominately cross-laminated timber panels (CLT). These sawn timber-based panels offer some key advantages to the construction and sawmilling industry. However, veneer-based mass-panel (VBMP) systems could offer additional benefits including the more efficient use of the available forest resources to produce WBMPs that have equivalent to superior performance to CLT. Research to confirm the expected technical viability of veneer-based systems is required. VBMPs could provide a valuable contribution, alongside CLT, to the Australian timber products market.

  • Editorialpp 4646-4649Wang, Y., Huo, H., Qian, X., and Shen, J. (2020). "Colloids, nanostructures, and supramolecular assemblies for papermaking," BioRes. 15(3), 4646-4649.AbstractArticlePDF

    The dominating role of colloid science in papermaking processes, as exemplified by wet-end chemistry, is now well known. The concept of colloids dates back to about 160 years ago. In certain cases, however, the term “colloids” can have an overlapping meaning with the modern terms “nanomaterials” and “supramolecular assemblies”. The latter terms, and the scientists who have gravitated to those terms, have enriched colloid science, providing new insights into colloidal systems. It is proposed here that reconsidering papermaking in light of these multi-disciplinary sciences has potential to facilitate effective teaching and learning pertaining to universities that have pulp and paper programs. Enhanced integration of basic sciences with papermaking may further our understanding and broaden existing research areas, which is likely to create breakthroughs in basic research, applied research, and product development.

  • Editorialpp 4650-4654Zhang, B., Cao, D., and Zhu, S. (2020). "Use of plants to clean polluted air: A potentially effective and low-cost phytoremediation technology," BioRes. 15(3), 4650-4654.AbstractArticlePDF

    Air pollution poses a great threat to human health, and it has become a worldwide problem that needs to be urgently dealt with. Many measures have been taken to reduce air pollution and improve air quality. These methods are generally costly and require special equipment. Some plants have the ability to assimilate, degrade, or modify toxic pollutants in air into less toxic ones. It is proposed here to develop plant-based technology to clean polluted air at low cost. This air phytoremediation technology has many potential advantages in contrast with traditional air pollution treatment methods. It is simple, potentially cheap, and easily implemented. Plants to be used for air phytoremediation have the potential to reduce pollutants in air and improve air quality; they also fix carbon dioxide through photosynthesis and help to decrease greenhouse gases in the atmosphere. The selected plants can also be used as raw materials for production of energy and bio-based chemicals. However, little research has been carried out on air phytoremediation technology, especially in the basic research area. This editorial gives a brief discussion about air phytoremediation to stimulate more research on this technology and further improve its effectiveness in practical use.

@BioResJournal

54 years ago

Read More