Research Articles
Latest articles
- Researchpp 5839-5853Li, W., Xu, Z., Zhang, T., Li, G., Jameel, H., Chang, H. M., and Ma, L. (2016). "Catalytic conversion of biomass-derived carbohydrates into 5-hydroxymethylfurfural using a strong solid acid catalyst in aqueous γ-valerolactone," BioRes. 11(3), 5839-5853.AbstractArticlePDF
Selective conversion of biomass-derived carbohydrates into 5-hydroxy-methylfurfural (HMF) is of great significance for biomass conversion. In this study, a novel solid Brønsted acid was prepared simply by the copolymerization of paraformaldehyde and p-toluenesulfonic acid and then used to catalyze the conversion of various carbohydrates into HMF in γ-valerolactone-water (GVL/H2O) reaction medium for the first time. The catalyst exhibited strong acidity, good water resistance, and high thermal stability. The present work focuses on the effects of various reaction parameters, including reaction temperature, time, water concentration, solvent, fructose level, and catalyst loading, on fructose dehydration. The catalyst exhibited excellent catalytic performance for HMF production from fructose in GVL and furnished a high HMF yield of 78.1% at 130 °C in 30 min. The recycling experiments suggested that the solid acid catalyst could be recycled at least seven times without a noticeable decrease in the catalytic activity. In addition, an attempt to study the one-step conversion of sucrose, glucose, and cellulose into HMF and furfural was performed using the same catalytic system.
- Researchpp 5854-5869Oke, M. A., Mohamad Annuar, M. S., and Simarani, K. (2016). "Enhanced endoglucanase production by Bacillus aerius on mixed lignocellulosic substrates," BioRes. 11(3), 5854-5869.AbstractArticlePDF
Selected carbon sources including soluble carboxymethyl cellulose (CMC), insoluble microcrystalline cellulose (MCC), and single (SS)/mixed lignocellulosic substrates (MS), were evaluated for endoglucanase production by B. aerius S5.2. The lignocellulosic substrates of oil palm empty fruit bunch (EFB), oil palm frond (OPF), rice husk (RH), and their mixture (MS) supported growth of the strain better than CMC and MCC. The maximum endoglucanase activity on MS was 7.3-, 2.6-, 1.7-, and 1.2-fold higher than those recorded on MCC, CMC, EFB/OPF, and RH, respectively. While the reducing sugar concentration of the CMC medium was comparable to that of the EFB and MS media, wide variability was observed in the reducing sugar concentrations among the lignocellulosic substrates. Extremely low levels of sugar were detected in the MCC medium, reflecting its poor digestibility and hence unsuitability for growth and endoglucanase production. Endoglucanase production was predominantly extracellular when the strain was grown on CMC and MS. After seven days of fermentation, there was an approximately 25% reduction in MS dry weight. These findings show that the use of mixed lignocellulosics could potentially reduce the cost of cellulase production. Certain novel aspects of the cellulase system of B. aerius are reported in this study.
- Researchpp 5870-5888López-Beceiro, J., Álvarez-García, A., Sebio-Puñal, T., Zaragoza-Fernández, S., Álvarez-García, B., Díaz-Díaz, A., Janeiro, J., and Artiaga, R. (2016). "Kinetics of thermal degradation of cellulose: Analysis based on isothermal and linear heating data," BioRes. 11(3), 5870-5888.AbstractArticlePDF
In spite of the many studies performed, there is not yet a kinetic model to predict the thermal degradation of cellulose in isothermal and non-isothermal conditions for the full extent of conversion. A model proposed by the authors was tested on non-oxidising thermogravimetric data. The method consisted of initially fitting several isothermal and non-isothermal curves, then obtaining a critical temperature and an energy barrier from the set of fittings that resulted from different experimental conditions. While the critical temperature, approximately 226 °C, represented the minimum temperature for the degradation process, the degradation rate at a given temperature was related to both the critical temperature and the energy barrier. These results were compared with those observed in other materials. The quality of fittings obtained was superior to any other reported to date, and the results obtained from each single curve were in line with each other.
- Researchpp 5889-5904Pang, A. L., Ismail, H., and Abu Bakar, A. (2016). "Tensile properties, water resistance, and thermal properties of linear low-density polyethylene/polyvinyl alcohol/kenaf composites: Effect of 3-(trimethoxysilyl) propyl methacrylate (TMS) as a silane coupling agent," BioRes. 11(3), 5889-5904.AbstractArticlePDF
Composites containing linear low-density polyethylene/polyvinyl alcohol and various loadings of kenaf fiber were prepared using a Haake internal mixer. The loading of kenaf fiber varied from 10 to 40 parts per hundred resin (phr). The coupling agent 3-(trimethoxysilyl)propyl methacrylate (TMS) was evaluated for its effect on the processing torque, tensile properties, morphology, water resistance, and thermal properties of the composites. Composites without TMS were used as the control. The composites made from TMS-treated kenaf yielded higher stabilization torque, tensile strength, tensile modulus, water resistance, and thermal properties than the control composites. The improvements were attributed to the coupling effect of TMS.
- Researchpp 5905-5917Rahman, M. R., Rahman, M. M., Hamdan, S., and Chang Hui Lai, J. (2016). "Impact of maleic anhydride, nanoclay, and silica on jute fiber-reinforced polyethylene biocomposites," BioRes. 11(3), 5905-5917.AbstractArticlePDF
Jute fiber/polyethylene biocomposites were prepared using a hot press molding technique. The effects of maleic anhydride, clay, and silica on the physical, mechanical, and thermal properties of jute fiber-reinforced polyethylene (PE) biocomposites with different fiber loadings (5, 10, 15, and 20 wt.%) were investigated. The biocomposites were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The mechanical properties were determined using a universal testing machine. The biocomposite specific surface area, pore volume, and pore size were investigated using the Brunauer-Emmett-Teller (BET) equation. Because of the Si-O-Si stretching vibration, the peak representing the O-H group significantly decreased in the range of 3200 to 3600 cm−1. Jute fiber/PE Maleic anhydride silica composite (JFPEMASC) showed smoother surfaces, which indicated good distribution and better interfacial bonding between the fibers and matrix. The jute fiber/polyethylene/silica composites had a higher surface area and pore volume, with a lower pore size. JFPEMASC was more thermally stable than the other composites, with higher activation energy. JFPEMASC had the highest Young’s modulus among all the biocomposites.
- Researchpp 5918-5930Chen, K., Lv, W., Chen, W., Wang, Y., Zhang, Y., Zhang, X., and Yao, J. (2016). "2,3,6-tricarboxylate cellulose as a fully biodegradable flocculant: Efficient synthesis and flocculation performance," BioRes. 11(3), 5918-5930.AbstractArticlePDF
Cellulose-based flocculants have shown excellent performance for wastewater flocculation, being low-cost and eco-friendly. However, they are still disturbed by the problems of incomplete biodegradability and unstable chemical structure. In the present study, 2,3,6-tricarboxylate cellulose (TCC) was developed as a novel fully biodegradable flocculant to deal with the preceding problems. The key carboxymethylation of cellulose was first carried out to make the subsequent NaIO4 oxidation occur under homogeneous conditions, which greatly enhanced the carboxylate content of the final TCC products. The chemical structure and solution properties of the TCCs were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffractometer system (XRD), field emission scanning electron microscopy (FESEM), charge density, particle size, and zeta potential. The flocculation performance of the TCCs was evaluated preliminarily by the turbidity removal of kaolin suspension. The positive results showed that all the TCC products had high carboxylate contents (more than 10 mmol/g) and zeta potentials. They exhibited excellent flocculation performance for the kaolin suspensions, in which the residual turbidities decreased from 610 to 14.9 NTU. Considering the degradation of cellulose caused by excessive NaIO4 oxidation, the TCC IV, together with its synthesis technology, could be used for practical applications in wastewater flocculation.
- Researchpp 5931-5940Hua, J., Ju, L., Cai, L., and Shi, S. Q. (2016). "Modeling the air-drying rate of Chinese larch lumber," BioRes. 11(3), 5931-5940.AbstractArticlePDF
To help protect the environment and reduce energy consumption in the wood industry, air-drying has been used to pre-dry lumber to about 30% moisture content. An air-drying model based on the principle of diffusivity was developed to help estimate air-drying times more accurately. Because the moisture movement rate considerably differs from that which occurs during kiln drying, the effective diffusion coefficients were experimentally determined at different temperatures. A user-friendly computer program predicting air-drying times was developed using the control volume method. The model was experimentally confirmed by air-drying practices. This program is a powerful tool used to estimate the air-drying times for any final moisture content for larch lumber, at any time of the year, at any location where the historical meteorological data, such as temperature, relative humidity, and wind speed, is available. This tool enables mill managers to generate an optimal operation plan based on their kiln capacity, yard availability, inventory requirements, and weather conditions.
- Researchpp 5941-5948Hamdan, S., Jusoh, I., Rahman, M. R., and de Juan, M. (2016). "Acoustic properties of Syzygium sp., Dialium sp., Gymnostoma sp., and Sindora sp. wood," BioRes. 11(3), 5941-5948.AbstractArticlePDF
Acoustic properties such as specific dynamic Young’s modulus (Ed/γ), internal friction (Q-1), and acoustic conversion efficiency (ACE) of wood are important properties frequently examined using free-free flexural vibration. This study determined the suitability for making musical instrument soundboards and frameboards from four tropical wood species; namely Syzygium, Dialium, Gymnostoma, and Sindora. The results show that (Ed/γ), (Q-1), and ACE were in the range of 20.0 to 28.9 GPa, 0.0031 to 0.0085, and 3.41×107 to 10.83×107, respectively. Based on the results, Syzygium was preferred for making the frameboard of violins and guitars. The outer sapwood (outer part) of Syzygium was the most suitable for making frameboard by considering the lowest ACE and highest Q-1. Based on Ed/γ, the inner sapwood (middle part) in Dialium was the most suitable for making soundboard, but based on Q-1 and ACE, heartwood (inner part) was the most preferred for making soundboard. Gymnostoma was also preferred for making soundboard of violins and guitars (inner sapwood) because it yields the highest mean value of Q-1 and ACE. Considering ACE and Q-1, the outer sapwood in Sindora was the best for making frameboard. When considering Ed/γ and Q-1, the heartwood is the most suitable for making the frameboard of violins and guitars.
- Researchpp 5949-5960Hendrik, J., Hadi, Y. S., Massijaya, M. Y., and Santoso, A. (2016). "Properties of laminated composite panels made from fast-growing species glued with mangium tannin adhesive," BioRes. 11(3), 5949-5960.AbstractArticlePDF
Laminated composite is a wood panel constructed from timber pieces then are laminated together. Bio-adhesives such as tannin adhesive are a potential alternative to synthetic adhesives. The purposes of this study were to characterize the chemical makeup of tannin from mangium (Acacia mangium) bark extract and to determine the physical-mechanical properties of the panels made from jabon (Anthocephalus cadamba) and sengon (Falcataria moluccana), and adhesives based on either mangium tannin or methylene diphenyl diisocyanate (MDI). The panels made from five layers of lamina were 5 cm × 24 cm × 120 cm in thickness, width, and length, respectively. Based on results from gas chromatography–mass spectrometry, mangium tannin had 34.04% phenolic compounds. Both wood species were low density, 0.31 g/cm3 for sengon and 0.44 g/cm3 for jabon, with an average moisture content of 12.4%. The panels had better width shrinkage than solid wood, with an anti-shrink efficiency of 72.5%. With regard to mechanical properties, none of the panels met the standard for the MOE or shear strength; however, sengon panel with MDI met the standard for MOR. In the delamination test, sengon panel was resistant to cold water immersion. All panels had low formaldehyde emission and met the standard requirements.
- Researchpp 5961-5973Deshpande, R., Sundvall, L., Grundberg, H., and Germgård, U. (2016). "The influence of different types of bisulfite cooking liquors on pine wood components," BioRes. 11(3), 5961-5973.AbstractArticlePDF
In this laboratory study, the initial phase of a single-stage sodium bisulfite cook was observed and analyzed. The experiments were carried out using either a lab- or a mill-prepared cooking acid, and the cooking temperature used in these experiments was 154 °C. Investigated parameters were the chemical consumption, the pH profile, and the pulp yield with respect to cellulose, lignin, glucomannan, xylan, and finally extractives. Cooking was extended down to approximately 60% pulp yield and the pulp composition during the cook, with respect to carbohydrates and lignin, was summarized in a kinetic model. The mill-prepared cooking acid had a higher COD (Chemical Oxygen Demand) and TOC (Total Organic Carbon) content than the lab-prepared cooking acid and this influenced the pH and the formation of thiosulfate during the cook. It was found that the presence of dissolved carbohydrates and lignin in the bisulfite cooking liquor affected the extractives removal and the thiosulfate formation.