Research Articles
Latest articles
- Researchpp 7026-7035Wu, W., Li, J., Liu, W., and Deng, Y. (2016). "Temperature-sensitive, fluorescent poly (N-Isopropyl-acrylamide)-grafted cellulose nanocrystals for drug release," BioRes. 11(3), 7026-7035.AbstractArticlePDF
Cellulose nanocrystals (CNCs) grafted with fluorescent and thermo-responsive poly (N-isopropylacryalamide) (PNIPAM) brushes were prepared for encapsulation and the release of 5-fluorouracil (5-FU). The successful grafting was evidenced by Fourier transform infrared (FTIR) spectroscopy and solid-state 13C nuclear magnetic resonance (13C NMR). Differential scanning calorimetry measurements suggested that the lower critical solution temperature of PNIPAM-grafted CNCs is close 32 °C. During polymerization, tuned fluorescence signatures were obtained by varying the dye dosages. At room temperature, the release amount of the loaded 5-FU was about 42% at a pH of 2.1, while this value approached 60% at a pH of 7.4. Both the cumulative release amount and the release rate were greatly increased when the temperature was raised to 37 °C. The novel PNIPAM-grafted CNCs with both fluorescence and stimuli-sensitive properties possess potential for application in intelligent drug delivery systems.
- Researchpp 7036-7045Qian, S., Ren, H., Dai, H., and Omori, S. (2016). "Characterization of polypropylene fiber and lignocresol enhanced poly(3-hydroxybutyrate) composite films,"BioRes. 11(3), 7036-7045.AbstractArticlePDF
The depletion of fossil resources and the environmental impact of petroleum-based plastic materials have driven a strong global interest in renewable biobased polymers and composites derived from natural resources. Since biodegradable polymers have their own drawbacks, it is often combined as a composite with other fillers. Polypropylene (PP)/Poly(3-hydroxybutyrate) (PHB) composite films and lignocresol (LC)/PP/PHB composite films were cast by blending methods. This study investigated the effects of the amounts of added PP fiber and LC on the mechanical and thermal properties in the corresponding composite films. The overall properties of LC/PP/PHB composite films were best with 8 wt.% PP fiber content and 3 wt.% LC content. The tensile strength (13.00 MPa) was up to 1.25 times that of the original PHB film (10.44 MPa), and the thermal properties of the composite films were improved by adding 3 wt.% LC. Thermogravimetry (TG) analysis indicated that the onset temperature (382.0 °C) rose by 50.7 °C compared with PP/PHB film (331.3 °C), and the residual mass was close to 0%.
- Researchpp 7046-7060Liu, Y. D., Xing, J. X., Liu, J. H., Chen, J. H., Wang, K., Jiang, J. X., and Sun, R. (2016). "Physicochemical characteristics of gradual fractionation ingredients of industrial galactomannan gums from Gleditsia microphylla and Cyamopsis tetragonoloba," BioRes. 11(3), 7046-7060.AbstractArticlePDF
Galactomannan in industrial Gleditsia microphylla and guar gum was successfully fractionated by gradual precipitation in an aqueous solution with increasing ethanol concentrations. The molecular properties of each fraction were characterized, and the galactomannans were added to photopolymerized hydrogels to test their effects on mechanical properties and swelling capacity. In the series fractions of guar gum, the sample precipitated from 20% EtOH solution had the highest yield, mannose to galactose ratio, and viscosity, and it had a slightly lower molecular weight than that precipitated by 30% EtOH. Correspondingly, the best tensile property of its photopolymerized hydrogel was finally detected. In terms of G. microphylla gum, the precipitation in 30% EtOH solution achieved the highest yield, M/G ratio, and molecular weight value, and it exhibited the best rheological property of all the samples. The hydrogel with the addition of this sample also had the best mechanical properties despite its lower hydroscopicity than the blank hydrogel. The unique properties of each fraction could probably lead to their use as biodegradable alternatives in different applications.
- Researchpp 7061-7077Domínguez-Robles, J., Espinosa, E., Savy, D., Rosal, A., and Rodríguez, A. (2016). "Biorefinery process combining Specel® process and selective lignin precipitation using mineral acids," BioRes. 11(3), 7061-7077.AbstractArticlePDF
Soda black liquors from the Specel® process, which used wheat straw as the raw material, were subjected to an acid precipitation process to recover the lignin. Lignin was isolated by acid precipitation using three different inorganics acids (H3PO4, H2SO4, and HCl) at three concentration levels, and at pH values of 2 and 4. Even though the highest lignin yield was achieved using phosphoric acid, the most economical inorganic acid was sulphuric acid. Physico-chemical characterizations of the precipitated lignin samples were performed using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) (for thermal properties), Fourier transform infrared spectroscopy (FT-IR), and heteronuclear single quantum correlation spectroscopy (HSQC) (for chemical structures). No significant differences were found in the thermal properties and chemical structures of the isolated lignins, except for the lignin obtained with phosphoric acid to lower the black liquor from pH 10.72 to pH 2. Apart from the lignin fraction collected, the soda pulp obtained by the Specel® process using wheat straw could represent a good alternative for packaging industries.
- Researchpp 7078-7090Qian, L., Yang, S., Hong, W., Chen, P., and Yao, X. (2016). "Synthesis of biomorphic charcoal/TiO2 composites from moso bamboo templates for absorbing microwave," BioRes. 11(3), 7078-7090.AbstractArticlePDF
Biomorphic charcoal/TiO2 composites (C/TiO2) from moso bamboo templates were produced for absorbing microwave. Subsequently, the characteristics of the C/TiO2 were investigated by scanning electron microscopy, thermogravimetric analysis, and vector network analysis. The results showed that the biomorphic microstructure of the moso bamboo charcoal was duplicated in the C/TiO2. Thus, the density of the C/TiO2 sintered at 1200 °C was lower and approximately 0.916 ± 0.003 g/cm3. Moreover, the ignition, the maximum combustion, and the burnout temperatures of the C/TiO2 sintered at 600 °C were ~320 °C, ~530 °C, and ~585 °C, respectively. Additionally, with the rising of the temperature sintering C/TiO2, the microwave absorbency of the C/TiO2 was improved over high frequency zones. Furthermore, the average imaginary-part values of the permittivity of the C/TiO2 sintered at 600 °C and 1200 °C notably increased by 11.16-fold. In addition, the peak of microwave reflection loss of the samples (2.0 mm thickness) from the C/TiO2 powder (wt. 20%) sintered at 1200 °C and the paraffin wax (wt. 80%) was observed as -18.0 dB at 17.4 GHz. Therefore, the C/TiO2 sintered at higher temperatures exhibited lower geometrical density, better thermostability, and favorable microwave absorptive properties.
- Researchpp 7091-7101Kirsch, A., Ostendorf, K., Kharazipour, A., and Euring, M. (2016). "Phenolics as mediators to accelerate the enzymatically initialized oxidation of laccase-mediator-systems for the production of medium density fiberboards," BioRes. 11(3), 7091-7101.AbstractArticlePDF
Crude oil as a non-renewable resource is creating new challenges in many industrial sectors. Unsteady costs of crude oil at present and expected increases in the future are due to its limited availability as a finite resource, and these costs negatively impact the industry for wood-based panels, which use petrochemical resins in binding agents. Furthermore, wood panels that are conventionally bonded using urea formaldehyde diffuse formaldehyde into the surrounding air. To achieve independence from petrochemical products and harmful formaldehyde emissions, alternatives for their substitution are in demand. An alternative approach is the enzymatic activation of lignin located on the surface of thermomechanical pulp (TMP) fibers. The present study shows the results of internal bond strength (DIN EN 319 1993), modulus of rupture (DIN EN 310 1993), and thickness swelling (EN 317 2003) of medium-density fiberboards (MDF) bonded with laccase-mediator-system (LMS). Caffeic acid (CA), 4-hydoxy benzoic acid (HBA), and vanillic alcohol (VAl) were used as mediators. The physical and technological properties of MDF, such as internal bond strength, modulus of rupture, and thickness swelling, mostly fulfilled the European standards.
- Researchpp 7102-7123Burli, P., Lal, P., Wolde, B., and Alavalapati, J. (2016). "Sustainability protocols and certification criteria switchgrass-based bioenergy," BioRes. 11(3), 7102-7123.AbstractArticlePDF
Production of bioenergy from cellulosic sources is likely to increase due to mandates, tax incentives, and subsidies. However, unchecked growth in the bioenergy industry has the potential to adversely influence land use, biodiversity, greenhouse gas (GHG) emissions, and water resources. It may have unintended environmental and socioeconomic consequences. Against this backdrop, it is important to develop standards and protocols that ensure sustainable bioenergy production, promote the benefits of biofuels, and avoid or minimize potential adverse outcomes. This paper highlights agronomic information on switchgrass, a high-potential bioenergy feedstock, and the role of specialized certification programs. The existing sustainability standards and protocols were reviewed in order to identify key gaps that justify a certification program specifically for switchgrass-based bioenergy. The criteria and indicators that should be considered for such a certification program are outlined.
- Researchpp 7124-7132Moser, C., Henriksson, G., and Lindström, M. E. (2016). "Specific surface area increase during cellulose nanofiber manufacturing related to energy input,"BioRes. 11(3), 7124-7132.AbstractArticlePDF
Softwood fibers pretreated with a monocomponent endoglucanase were used to prepare a series of cellulose nanofiber qualities using a microfluidizer and 2 to 34 MWh ton-1 of energy input. The specific surface area was determined for the series using critical point drying and gas adsorption. Although the specific surface area reached a maximum of 430 m2 g-1 at 11 MWh ton-1, the nanofiber yield and transmittance continued to increase beyond this point, indicating that more energy is required to overcome possible friction caused by an interwoven nanofiber network unrelated to the specific surface area. A new method for estimating the surface area was investigated using xyloglucan adsorption in pure water. With this method it was possible to follow the disintegration past the point of maximum specific surface area. The technical significance of these findings is discussed.
- Researchpp 7133-7144Yang, T., Jia, K., Kai, X., Sun, Y., Li, Y., and Li, R. (2016). "A study on the migration behavior of K, Na, and Cl during biomass gasification," BioRes. 11(3), 7133-7144.AbstractArticlePDF
The migration behavior of the alkali metals and chlorine were studied during rice straw and corn straw gasification in a fixed bed reactor at various temperatures using thermodynamic equilibrium calculations, X-ray diffraction (XRD), and scanning electron microscopy/energy dispersive spectrometry (SEM-EDS). The results showed that K and Na were released mostly in chloride form. The release of potassium, sodium, and chlorine increased upon the increase in temperature from 600 to 1000 °C. The maximum amounts of potassium, sodium, and chlorine that were released from rice straw were 38.9%, 18.7%, and 34.9%, respectively. The maximum amounts of potassium and chlorine that were released from corn straw were 24% and 43.6%, respectively, which occurred at 1000 °C. The maximum amount of sodium released from corn straw was 77.6%, at 700 °C, and the amount of sodium released was greater than that of potassium. Most of the potassium and sodium was converted into insoluble carbonate, sulfate, silicate, and aluminosilicate compounds in the gasification ash.
- Researchpp 7145-7161Zhou, Y., Zhang, J., Luo, X., and Luo, Y. (2016). "Enhanced adsorption of mercury(II) and cadmium(II) from aqueous solution onto rice bran modified with chelating ligands," BioRes. 11(3), 7145-7161.AbstractArticlePDF
To enhance the removal of mercury (Hg(II)) and cadmium (Cd(II)) from aqueous solutions, rice bran (RB) was reacted with epichlorohydrin and then modified with ethylenediamine and sodium chloroacetate to bear iminodiacetate functional groups. The modified rice bran (MRB) was characterized by Fourier transform-infrared spectroscopy (FT-IR), thermogravimetric analysis (TG), energy dispersive spectroscopy (EDS), back titration, and X-ray photoelectron spectroscopy (XPS). The adsorption properties of MRB for Hg(II)/Cd(II) ions were also evaluated in batch experiments. The sorption kinetic experimental data were best described by the pseudo-second-order model. The maximum adsorption capacity (163.9 mg/g for Hg(II) at pH 5.0 and 106.4 mg/g for Cd(II) at pH 6.0) was observed at 298 K, and the isotherm adsorption equilibrium of MRB was followed by Langmuir isotherm equation. The major adsorption mechanisms should be predominantly controlled by the formation of complexes between the functional groups of MRB and Hg(II)/Cd(II) ions as well as ion-exchange. The regeneration experiments showed that the MRB could be successfully reused for six cycles when 0.1 M HCl eluent was used.