NC State
  • Reviewpp 93-115Moghtaderi, B., Sheng, C., and Wall, T. F. (2006). "An overview of the Australian biomass resources and utilization technologies," BioRes. 1(1), 93-115.AbstractPDF

    Information on Australian biomass resources including bagasse, black liquor from paper pulp production, wood waste and forestry residues, energy crops, crop wastes, food and agricultural wet waste, and municipal solid wastes is provided in the review. The characteristics of the Australian biomass are typical of those of other countries, i.e. high moisture and volatile matter, low heating value and density, and low sulfur and nitrogen content, but high Ca and Mg for woody biomass. The characteristics influence biomass utilization. Biomass is used extensively at present within Australia , primarily for domestic heating, as bagasse in the sugar industry, and for electricity generation. Biomass usage for electricity generation is increasing and is expected to reach 5.2 Mt/year by 2019-20. Exports, as wood chips, are approximately 10 Mt/year in 2000-01. Forestry residues have been estimated to be 23 Mt/year. Current technologies that utilize biomass in Australia include those for electricity and heat by direct combustion, cofiring with coal and fluidized bed combustion), for biogas generation (from landfills, and aerobic digestion, and as bio-liquids. Related to bio-liquid fuels, ethanol production from molasses and wheat is making progress. The resultant ethanol is used as a petrol extender, and a bio-diesel process is under development.

  • Reviewpp 116-149Hubbe, M. A. (2006). "Sensing the electrokinetic potential of cellulosic fiber surfaces," BioRes. 1(1), 116-149.AbstractPDF

    The charged nature of a cellulosic fiber surface is expected to play major roles in such phenomena as fiber dispersion, flocculation, adhesion, and adsorption of polyelectrolytes. This review focuses on the evaluation of such charges by means of electrokinetic measurements, with emphasis on the fiber-pad streaming potential technique. Results of recent experiments suggest that a continuous network or networks of pores below the outer surface of a kraft fiber can significantly contribute to observed streaming potential data. At present it is not clear whether the main subsurface contributions to the observed electrokinetic effects come from fibrillar layers on the fiber surfaces or from systems of nanopores within the cell walls of fibers. Based on the literature it is possible to suggest two conceptual models to account for the fact that the streaming potential of polymer-treated fibers can change in sign, dependent on the concentration of salt. Additional research is needed to clarify various theoretical and practical points. There may be oppor-tunities to make more effective use of streaming potential tests in the future by carrying out such tests at reduced salt levels.

  • Reviewpp 150-171Lee, S. Y., Hubbe, M. A., and Saka, H. (2006). "Prospects for biodiesel as a byproduct of wood pulping - A review," BioRes. 1(1), 150-171AbstractPDF

    Effective utilization of byproducts can affect the profitability of kraft pulping to produce cellulosic fibers from wood. This review considers opportunities to use tall oil components, obtained from kraft pulping, as a source of raw material for biodiesel fuel, or as a source of additives for petrodiesel. Considerable progress has been achieved with respect to converting vegetable oils to diesel fuel, and some of what has been learned appears to have potential application for processing of wood-derived fatty acids and related compounds. Alkaline – catalyzed trans esterification strategies, while seemingly well adapted for relatively pure vegetable oil source materials, may not be the best fit for the processing of tall oil fractions. The promising strategies to consider include acid – catalyzed esterification, enzymatic processes, hydrogenation, and the use of supercritical methanol.

  • Reviewpp 270-280Hoenich, N. (2006). "Cellulose for medical applications: Past, present, and future," BioRes. 1 (2), 270-280.AbstractPDF

    Films and tubes manufactured from cellulose have historically been used in the treatment of renal failure, but their use for this purpose has declined in recent years in favour of films manufactured from synthetic material blends. As the clinical application of cellulose for dialysis declines, new applications for its use are emerging, of which the most promising appears to be the use of microbial cellulose synthesized by Acetobacter xylinum as a novel wound healing system and as a scaffold for tissue regeneration.

  • Reviewpp 281-318Hubbe, M. A. (2006). "Bonding between cellulosic fibers in the absence and presence of dry-strength agents - A review," BioRes. 1(2), 281-318.AbstractPDF

    Various hydrophilic polyelectrolytes, including cationic starch products, are used by papermakers to promote inter-fiber bonding and increase paper’s dry-strength. Thus, papermakers can meet customer require-ments with a lower net cost of materials, more recycled fibers, or higher mineral content. In the absence of polymeric additives, key mechanisms governing bond development between cellulosic fibers include capillary action, three-dimensional mixing of macromolecules on facing surfaces, conformability of the materials, and hydrogen bonding. Dry-strength additives need to adsorb efficiently onto fibers, have a hydrophilic character, and have a sufficiently high molecular mass. Though it is possible to achieve significant strength gains by optimal usage of individual polyelectrolytes, greater strength gains can be achieved by sequential addition of oppositely charged polyelectrolytes. Superior strength can be achieved by in-situ formation of polyelectrolyte com-plexes, followed by deposition of those complexes onto fiber surfaces. Polyampholytes also hold promise as efficient dry-strength additives. Opportunities for further increases in performance of dry-strength agents may involve fiber surface modification, self-assembled layers, and optimization of the dry film characteristics of dry-strength polymers or systems of polymers.

  • Reviewpp 106-145Hubbe, M. A. (2007). "Paper's resistance to wetting - A review of internal sizing chemicals and their effects," BioRes. 2(1), 106-145.AbstractPDF
    This review considers research related to internal sizing agents. Such chemicals, when added as emulsions or in micellar form to slurries of cellulosic fibers before paper is made, can make the product resist water and other fluids. Significant progress has been achieved to elucidate the modes of action of alkylketene dimer (AKD), alkenylsuccinic anhydride (ASA), rosin products, and other sizing chemicals. Recent findings generally support a traditional view that efficient hydrophobation requires that the sizing chemicals contain hydrophobic groups, that they are efficiently retained on fiber surfaces during the papermaking process, that they become well distributed on a molecular scale, and that they need to be chemically anchored. A variety of studies have quantified ways in which internal sizing treatments tend to be inefficient, compared to what is theoretically possible. The inefficient nature of chemical and physical processes associated with internal sizing, as well as competing reactions and some interfering or contributing factors, help to explain apparent inconsistencies between the results of some recent studies.
  • Reviewpp 296-331Hubbe, M. A. (2007). "Flocculation and redispersion of cellulosic fiber suspensions: A review of effects of hydrodynamic shear and polyelectrolytes," BioRes. 2(2), 296-331.AbstractPDF
    Cellulosic fibers in aqueous suspensions are subject to flocculation effects that involve two contrasting scales of dimension. The net effect of flocculation determines how uniformly fibers can become formed into a sheet during the manufacture of paper. At a macroscopic level, the highly elongated shape of typical wood-derived fibers in agitated suspensions can give rise to frequent inter-fiber collisions and the formation of fiber flocs. At a submicroscopic scale, surfaces of suspended materials can become joined by macromolecular bridges. Although such bridges tend to reduce paper’s uniformity, polyelectrolyte flocculants are used in most paper machine systems to achieve relatively high retention efficiencies of fine particles as paper is being formed. By adjusting the papermaking equipment, judiciously selecting points of addition of chemicals, and by managing chemical dosages, papermakers employ a variety of strategies to achieve favorable combinations of retention and uniformity. This review considers scholarly work that has been directed towards a greater understanding of the underlying mechanisms.
  • Reviewpp 472-499Taherdazeh, M. J., and Karimi, K. (2007). "Acid-based hydrolysis processes for ethanol from lignocellulosic materials: A review," BioRes. 2(3), 472-499.AbstractPDF
    Bioethanol is nowadays one of the main actors in the fuel market. It is currently produced from sugars and starchy materials, but lignocelluloses can be expected to be major feedstocks for ethanol production in the future. Two processes are being developed in parallel for conversion of lignocelluloses to ethanol, “acid-based” and “enzyme-based” processes. The current article is dedicated to review of progress in the “acid-based-hydrolysis” process. This process was used industrially in the 1940s, during wartime, but was not economically competitive afterward. However, intensive research and development on its technology during the last three decades, in addition to the expanding ethanol market, may revive the process in large scale once again. In this paper the ethanol market, the composition of lignocellulosic materials, concentrated- and dilute-acid pretreatment and hydrolysis, plug-flow, percolation, counter-current and shrinking-bed hydrolysis reactors, fermentation of hexoses and pentoses, effects of fermentation inhibitors, downstream processing, wastewater treatment, analytical methods used, and the current commercial status of the acid-based ethanol processes are reviewed.
  • Reviewpp 500533Hubbe, M. A., and Heitmann, J. A. (2007). "Review of factors affecting the release of water from cellulosic fibers during paper manufacture," BioRes. 2(3), 500-533.AbstractPDF
    The ease with which water is released from cellulosic fiber material during the manufacturing of paper can affect both the production rate and the consumption of energy during the manufacturing process. Important theoretical contributions to dewatering phenomena have been based on flow through packed beds of uniformly distributed fibers. Such descriptions are able to explain why resistance to dewatering increases as a function of the hydrodynamic surface area of fibers. More recent studies have demonstrated a critical role of finely divided matter. If the fines are unattached to fibers, then they tend to move freely through the fiber mat and plug channels in the paper web during the dewatering process. Dewatering also is affected by the deformability of cellulosic fibers and by whether the fibers easily slide past each other, thereby forming a dense mat. By emphasizing the role of fine matter, colloidal forces, and conformability of cellulosic materials, one can gain a more realistic understanding of strategies that papermakers use to enhance initial drainage and vacuum-induced dewatering.
  • Reviewpp 707-738Taherzadeh, M. J., and Karimi, K. (2007). "Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: A review," BioRes. 2(4), 707-738.AbstractPDF
    This article reviews developments in the technology for ethanol production from lignocellulosic materials by “enzymatic” processes. Several methods of pretreatment of lignocelluloses are discussed, where the crystalline structure of lignocelluloses is opened up, making them more accessible to the cellulase enzymes. The characteristics of these enzymes and important factors in enzymatic hydrolysis of the cellulose and hemicellulose to cellobiose, glucose, and other sugars are discussed. Different strategies are then described for enzymatic hydrolysis and fermentation, including separate enzymatic hydrolysis and fermentation (SHF), simultaneous saccharification and fermentation (SSF), non-isothermal simultaneous saccharification and fermentation (NSSF), simultaneous saccharification and co-fermentation (SSCF), and consolidated bioprocessing (CBP). Furthermore, the by-products in ethanol from lignocellulosic materials, wastewater treatment, commercial status, and energy production and integration are reviewed.