Volume 10 Issue 2
Latest articles
- Researchpp 2328-2337Toda, M., Akiyama, T., Yokoyama, T., and Matsumoto, Y. (2015). "Quantitative examination of pre-extraction treatment on the determination of lignin content in leaves," BioRes. 10(2), 2328-2337.AbstractArticlePDF
It has been suggested that the Klason method overestimates the lignin content of non-wood tissues of plants. To evaluate the effect of pre-extraction treatments on lignin determination in leaves, nine kinds of pre-extraction treatment were applied to ginkgo leaves and zelkova leaves. The apparent lignin contents (lignin determination by the Klason method) of ginkgo and zelkova leaves without pre-extraction treatments were 30.7% and 42.6%, respectively. After the various pre-extraction treatments, the apparent lignin contents were still high. On the other hand, the yield of nitrobenzene oxidation products (NPs) per apparent lignin content was maintained at a very low level before and after pre-extraction treatments (maximum value was 6% for ginkgo leaf and 11% for zelkova leaf after extraction treatment) compared with the value from wood (25 to 60%). These results suggested that the Klason method overestimates the lignin content of leaves even after the pre-extraction treatments examined in this study. In addition, a considerable part of the sample from which NPs or neutral sugars originate was lost during these pre-extraction stages. These results implied that some parts of the cell wall components were also removed by these pre-extraction treatments.
- Researchpp 2338-2349Zheng, X., Yin, Y., Jiang, W., Xing, L., and Pu, J. (2015). "Synthesis and characterization of low molecular weight chitosan," BioRes. 10(2), 2338-2349.AbstractArticlePDF
Chitosan can be widely used in many areas owing to its unique properties, although its poor solubility in water is still a limiting factor. In the present study, low molecular weight chitosan (LMWC) was prepared by degradation with NaClO so that chitosan was able to dissolve in water. Chitosan to liquor ratio, NaClO content, temperature, and time were considered variables of NaClO degradation, and the Box-Behnken design was used to determine optimal conditions. There was good agreement between the experimental data and their predicted counterparts. The optimum conditions for chitosan degradation were estimated to be 1:67.91 of chitosan to liquor ratio, 22.03% of NaClO content, a temperature of 90.3 °C, and a time of 3.07 h. It was found that synthesis under these optimized conditions achieved the lowest molecular weight (10,937.4 Daltons). In addition, Fourier transform infrared spectroscopy, X-ray diffractograms, and thermogravimetric analysis showed that the structure of LMWC was similar to the original chitosan, while the crystallinity and thermal stability decreased after degradation.
- Researchpp 2350-2359Sri Aprilia, N. A., Hossain, M. S., Abdullah, C. K., Abdul Khalil, H. P. S., Rosamah, E., Dungani, R., Davoudpour, Y., and Zaidul, I. S. M. (2015). "Environmental durability of vinyl ester composites filled with carbonized jatropha seed shell," BioRes. 10(2), 2350-2359.AbstractArticlePDF
The durability of vinyl ester composites filled with carbonized jatropha seed shell was investigated in 5% NaOH solution, 5% HCl solution, and distilled water for 12 months. The environmental durability of the composites was determined by measuring weight changes, flexural properties, and tensile properties. Results showed weight gain and changes in the mechanical properties of the composites due to the soaking time in alkaline, acidic, and neutral environments. It was observed that vinyl ester composites had the highest tensile properties in alkaline environments. The highest flexural properties of the vinyl ester composites were observed in an alkaline environment. Scanning electron microscope image analysis revealed that the surface of the vinyl ester composites was rough and that the original luster was lost after soaking in alkaline solution, acidic solution, and distilled water for 12 months.
- Researchpp 2360-2375Moser, C., Lindström, M. E., and Henriksson, G. (2015). "Toward industrially feasible methods for following the process of manufacturing cellulose nanofibers," BioRes. 10(2), 2360-2375.AbstractArticlePDF
Nanocellulose is a recently developed form of cellulose that has the potential to be used in many different industries, ranging from food to high-performance applications. This material is commercially manufactured through the homogenization of chemical pulps, but the process is energy-consuming and is still an important subject for development. Simple, robust methods are required for the quality control and optimization of industrial nanocellulose production. In this study, a number of different methods, based on different principles of monitoring the manufacture of cellulose nanofibers were evaluated and compared for five different nanocellulose qualities, both for their resolution and robustness/ease. Methods based on microscopy, light scattering, centrifugation, and viscosity were examined and all appeared useful for observing the manufacturing process during its initial stage. However, only methods based on centrifugation, turbidity, and transmittance yielded reliable data for the entire manufacturing process. Of these methods, transmittance measurement may be the best candidate for routine use because the method is simple, rapid, and only requires spectrophotometer equipment.
- Researchpp 2376-2391Chen, C., Mao, S., Wang, J., Bao, J., Xu, H., Su, W., and Dai, H. (2015). "Application of ultrafiltration in a paper mill: Process water reuse and membrane fouling analysis," BioRes. 10(2), 2376-2391.AbstractArticlePDF
High water consumption is a major environmental problem that the pulp and paper industry is facing. Ultrafiltration (UF) can be used to remove the dissolved and colloidal substances (DCS) concentrated during the recycling of white water (the process water) to facilitate the reuse of white water and reduce fresh water consumption. However, membrane fouling limits the application of UF in this industry. In this study, super-clear filtrate obtained from a fine paper mill was purified with a polyethersulfone (PES) ultrafiltration membrane to evaluate the reuse performance of the ultrafiltrate. The membrane foulants were characterized by scanning electron microscopy, energy-dispersive spectrophotometry, attenuated total reflection-fourier transform infrared spectroscopy, and gas chromatography-mass spectrometry. The results indicate that the retention rate of stock and the strength properties of paper increased when the ultrafiltrate was reused in the papermaking process compared to when super-clear filtrate was used. The reversible membrane foulants during ultrafiltration accounted for 85.52% of the total foulants and primarily originated from retention aids, drainage aids, and wet strength resins, while the irreversible adsorptive foulants accounted for 14.48% and mostly came from sizing agents, coating chemicals, and others. Moreover, the presence of dissolved multivalent metal ions, especially Ca2+, accelerated membrane fouling.
- Researchpp 2392-2405Zhu, X., and Sun, L. (2015). "Multiscale analysis on electrical properties of carbon fiber-reinforced wood composites," BioRes. 10(2), 2392-2405.AbstractArticlePDF
Carbon fiber was selected as a reinforcement for the manufacture of composite materials. Electrical properties of carbon fiber reinforced wood composites (CFRWCs) were studied by multiscale analysis, which is an all-rounded method to analyze CFRWCs from the macroscopic area to the microcosmic field. It was found that the insulated wood fiber materials could conduct electricity after adding a certain proportion of carbon fibers. The dielectric constants and the capacitances of CFRWCs increased gradually with increasing carbon fiber content in the composites from 55 wt.% to 75 wt.% when a certain condition prevails. However, the loss tangents and the surface resistivities of CFRWCs decreased as the carbon fiber content was increased continuously. The data of surface resistivity represented a negative growth situation with increasing temperature from 20 °C to 120 °C and exhibited a negative temperature coefficient (NTC) effect. The movement of electrons was also analyzed due to temperature rise.
- Researchpp 2406-2417Yu, L., Tatsumi, D., Zuo, S., and Morita, M. (2015). "Promotion of crystal growth on biomass-based carbon using phosphoric acid treatments," BioRes. 10(2), 2406-2417.AbstractArticlePDF
The effect of phosphoric acid treatments on graphitic microcrystal growth of biomass-based carbons was investigated using X-ray diffraction, infrared spectroscopy, and Raman spectroscopy. Although biomass-based carbons are believed to be hard to graphitize even after heat treatments well beyond 2000 °C, we found that graphitic microcrystals of biomass-based carbons were significantly promoted by phosphoric acid treatments above 800 °C. Moreover, twisted spindle-like whiskers were formed on the surface of the carbons. This suggests that phosphorus-containing groups turn graphitic microcrystalline domains into graphite during phosphoric acid treatments. In addition, the porous texture of the phosphoric acid-treated carbon has the advantage of micropore development.
- Researchpp 2418-2424Liu, S., Wang, Q., Yang, G., Chen, J., Ni, Y., and Ji, X. (2015). "Kinetics of viscosity decrease by cellulase treatment of bleached hardwood kraft-based dissolving pulp," BioRes. 10(2), 2418-2424.AbstractArticlePDF
A dissolving pulp of low cellulose viscosity represents a pulp of high quality; hence, it is often necessary to decrease the initial dissolving pulp viscosity. One so-called environmentally friendly approach to further reducing the dissolving pulp viscosity is to treat the dissolving pulp with cellulase enzymes. In this study, the kinetics of the decrease in cellulose viscosity during a cellulase treatment was investigated. The study showed that the kinetics of the cellulose degradation during a cellulase treatment can be divided into at least two phases, where the initial phase is very fast and the final phase is very slow. The kinetic two-phase model for the viscosity degradation that has been developed in this project can be used to predict and control the final pulp viscosity of dissolving pulps.
- Researchpp 2425-2432Li, Z., Xiao, D., Kong, Y., and Ge, Y. (2015). "Enhancing lead adsorption capacity by controlling the chain length of alkyl amine grafted lignin," BioRes. 10(2), 2425-2432.AbstractArticlePDF
The adsorption capacity of lignin for lead can be controlled by varying the chain length of alkyl, attaching the amine to the lignin surface from C2 (ethyl) to C18 (octadecyl). Altering the chain length had a strong effect on the contribution of amine groups in the adsorption of lead ions by lignin. The adsorption capacity increased 105.0% as the chain length increased to butyl (C4); however, further chain lengths, up to C18, provided no additional benefit, and in some cases even hindered the adsorption capacity of lignin. A short-chain alkyl (C4) group enhanced the beneficial amine contributions for metal ion adsorption, which resulted from the efficient inductive effectiveness of the alkyl groups.
- Researchpp 2433-2443Ateş, S., Gür, M., Özkan, O. E., Akça, M., Olgun, C., and Güder, A. (2015). "Chemical contents and antifungal activity of some durable wood extractives vs. Pleurotus ostreatus," BioRes. 10(2), 2433-2443.AbstractArticlePDF
The total phenolic content (TPC), total flavonoid content (TFC), phenolic compounds, and antifungal activity of olive (Olea europaea var. sylvestris) and juniper (Juniperus foetidissima) sapwood and heartwood extractives were examined. The extractives were obtained using methanol solvents. The different compounds in extractives were identified and quantified. The antifungal activities of different parts of the olive and juniper wood extractives were determined in vitro. Pleurotus ostreatus mycelium was used for the antifungal activity experiment. Extractive compounds obtained from olive and juniper woods were found to be effective, natural antifungal agents.