NC State
BioResources
  • Reviewpp 2850-2885Tang, Y., Rosenberg, J. N., Bohutskyi, P., Yu, G., Betenbaugh, M. J., and Wang, F. (2016). "Microalgae as a feedstock for biofuel precursors and value-added products: Green fuels and golden opportunities," BioRes. 11(1), 2850-2885.AbstractArticlePDF

    The prospects of biofuel production from microalgal carbohydrates and lipids coupled with greenhouse gas mitigation due to photosynthetic assimilation of CO2 have ushered in a renewed interest in algal feedstock. Furthermore, microalgae (including cyanobacteria) have become established as commercial sources of value-added biochemicals such as polyunsaturated fatty acids and carotenoid pigments used as antioxidants in nutritional supplements and cosmetics. This article presents a comprehensive synopsis of the metabolic basis for accumulating lipids as well as applicable methods of lipid and cellulose bioconversion and final applications of these natural or refined products from microalgal biomass. For lipids, one-step in situ transesterification offers a new and more accurate approach to quantify oil content. As a complement to microalgal oil fractions, the utilization of cellulosic biomass from microalgae to produce bioethanol by fermentation, biogas by anaerobic digestion, and bio-oil by hydrothermal liquefaction are discussed. Collectively, a compendium of information spanning green renewable fuels and value-added nutritional compounds is provided.

  • Reviewpp 2886-2963Hubbe, M. A., and Gill, R. A. (2016). "Fillers for papermaking: A review of their properties, usage practices, and their mechanistic role," BioRes. 11(1), 2886-2963.AbstractArticlePDF

    Issues of cost and product quality have caused papermakers to place increased attention on the use of mineral additives, which are the subject of this review article. Technologists responsible for the production of paper can choose from a broad range of natural and synthetic mineral products, each of which has different characteristic shapes, size distributions, and surface chemical behavior. This article considers methods of characterization, and then discusses the distinguishing features of widely available filler products. The mechanisms by which fillers affect different paper properties is reviewed, as well as procedures for handling fillers in the paper mill and retaining them in the paper. Optical properties of paper and strategies to maintain paper strength at higher filler levels are considered. The goal of this review is to provide background both for engineers working to make their paper products more competitive and for researchers aiming to achieve effects beyond the current state of the art.