Volume 11 Issue 1
Latest articles
- Researchpp 2839-2849Nur Firdaus, M. Y., Osman, H., Metselaar, H. S. C., and Rozyanty, A. R. (2016). "Preparation and characterization of active SiO2 from Cymbopogon citratus ash calcined at different temperature," BioRes. 11(1), 2839-2849.AbstractArticlePDF
Cymbopogon citratus orlemon grass, is a potential renewable herbaceous biomass alternative. Lemon grass contains silica, which is available for extraction as a filler for various applications. Lemon grassash is produced at calcination temperatures of 0, 400, 525, 600, and 700 ˚C. The silica content of the lemon grass ash was characterized by X-ray fluorescence (XRF), X-ray powder diffraction (XRD), scanning electron microcopy (SEM), and Fourier transform infrared (FTIR) analysis. The shape and texture of the lemon grass ash were studied by SEM. The highest silica content recorded was 24.00% for lemon grass calcined at 400 °C. The porosity of the lemon grass ash increased as the calcination temperature increased from 0 °C to 700 °C. XRD analysis showed that the crystallinity of silica in the lemon grass ash increased with increasing calcination temperature. FTIR analysis confirmed the presence of organic structure in lemon grass without calcination and the inorganic structure of siloxane and silanol bonds present in lemon grass calcined at different temperatures.
- Reviewpp 2886-2963Hubbe, M. A., and Gill, R. A. (2016). "Fillers for papermaking: A review of their properties, usage practices, and their mechanistic role," BioRes. 11(1), 2886-2963.AbstractArticlePDF
Issues of cost and product quality have caused papermakers to place increased attention on the use of mineral additives, which are the subject of this review article. Technologists responsible for the production of paper can choose from a broad range of natural and synthetic mineral products, each of which has different characteristic shapes, size distributions, and surface chemical behavior. This article considers methods of characterization, and then discusses the distinguishing features of widely available filler products. The mechanisms by which fillers affect different paper properties is reviewed, as well as procedures for handling fillers in the paper mill and retaining them in the paper. Optical properties of paper and strategies to maintain paper strength at higher filler levels are considered. The goal of this review is to provide background both for engineers working to make their paper products more competitive and for researchers aiming to achieve effects beyond the current state of the art.