NC State
BioResources
  • Researchpp 6822-6835Park, J., Horvath, L., and Bush, R. J. (2016). "Process methods and levels of automation of wood pallet repair in the United States," BioRes. 11(3), 6822-6835.AbstractArticlePDF

    This study documented the current status of wood pallet repair in the United States by identifying the types of processing and equipment usage in repair operations from an automation perspective. The wood pallet repair firms included in the study received an average of approximately 1.28 million cores (i.e., used pallets) for recovery in 2012. A majority of the cores received were stringer-style pallets. The most common pallet size received and repaired was 48 x 40 inch. The most commonly used stringer repair method was the application of companion stringers. It was found that most firms utilized high levels of manual labor, with limited machinery support. The board trimming and pallet sorting/stacking processes had the highest level of automation, while the inspection, nailing, and painting processes utilized manual labor.

  • Researchpp 6836-6853Kasal, A., Smardzewski, J., Kuşkun, T., and Erdil, Y. Z. (2016). "Numerical analyses of various sizes of mortise and tenon furniture joints," BioRes. 11(3), 6836-6853.AbstractArticlePDF

    This study reports the moment resistance, stiffness, and numerical analysis of various sizes of round-end mortise and tenon joints. L-shaped and T-shaped specimens were constructed. Joints were manufactured using three tenon widths and three tenon lengths with 10 replications for each combination. Specimens were constructed of Turkish beech, and the joints were assembled with polyvinylacetate (PVAc) adhesive. Bending tests were carried out in compliance with accepted test methods. Numerical analyses were performed with finite element method (FEM) software. At the end of the study, the joints became stronger and stiffer as either tenon width or length increased. Tenon length had a more significant effect on moment resistance, while tenon width had a more significant effect on stiffness. Ultimate moment resistances were obtained with L-shaped joint construction of 50 × 50 mm tenons and T-shaped joint construction of 40 × 50 mm tenons. Strength of a chair could be increased by considering these results in engineering design process. Results showed that the numerical analyses gave reasonable estimates of mechanical behavior of joints. Analytical calculations and numerical simulations confirmed that the maximum stress in the glue line was concentrated at the edge and corners, and that the modeled joints had a shape-adhesive nature.

  • Researchpp 6854-6866Li, M., Han, G., Song, Y., Jiang, W., and Zhang, Y. (2016). "Structure, composition, and thermal properties of cellulose fibers from Pueraria lobata treated with a combination of steam explosion and laccase mediator system," BioRes. 11(3), 6854-6866.AbstractArticlePDF

    Cellulosic fibers from the bast of Pueraria lobata (P. lobata) vine were separated using a “green” and efficient method that combined steam explosion (SE) and a laccase mediator system (LMS). The chemical components, structure, and thermal alterations in the fibers were evaluated. The SE performed at 180 °C for 10 min did not change the chemical composition of P. lobata; however, SE did alter the fiber structure and rendered its surface more accessible to the laccase enzyme. Treated and untreated samples were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), thermogravimetric analysis (TGA), and chemical methods. The cellulose content of the processed fibers was approximately 68.2%, and the lignin content was 11.8%, which was much lower than the 22.98% lignin content of the raw material. The cellulose fibers exhibited higher cellulose crystallinity and thermal stability compared with the untreated samples. This combined treatment approach may be useful for the isolation of cellulose fibers for composites, textiles, and other industrial applications.

  • Researchpp 6867-6879Ma, Z., Li, S., Qiao, W., and Ren, S. (2016). "Hydrothermal degradation of enzymatic hydrolysis lignin in water-isopropyl alcohol co-solvent," BioRes. 11(3), 6867-6879.AbstractArticlePDF

    The effect of hydrothermal conditions on enzymatic hydrolysis lignin (EHL) degradation in water-isopropyl alcohol co-solvent and optimal conditions were investigated. The yields and reactivity toward formaldehyde of degraded enzymatic hydrolysis lignin (DEL) were determined. The optimal conditions of temperature, time, and ratio of solids to liquids were 250 °C, 60 min, and 1:10 (w/v), respectively. The EHL and DEL were characterized by gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FT-IR), 1H nuclear magnetic resonance (1H NMR), thermal gravity (TG), and differential scanning calorimetry (DSC) analyses. The results revealed that the molecular weight and polydispersity of DEL were lower than that of EHL. Although the fundamental structure of lignin before and after hydrothermal degradation was retained, the ether (β-O-4, α-O-4, etc.) content decreased, while that of hydroxyl (phenolic and aliphatic) increased. The DTGmax and Tg values shifted from 334 and 117 °C to 304 and 105 °C, respectively.

  • Researchpp 6880-6895Liew, F. K., Hamdan, S., Rahman, M. R., Mahmood, M. R., Rahman, M. M., Lai, J. C. H., and Sultan, M. T. (2016). "4-methylcatechol-treated jute-bamboo hybrid composites: Effects of pH on thermo-mechanical and morphological properties," BioRes. 11(3), 6880-6895.AbstractArticlePDF

    Hybrid composites were fabricated with 4-methylcatechol-treated jute and bamboo fiber at different pH levels. The effects of different pH levels on the thermal, mechanical, and morphological properties of jute-bamboo hybrid composites were investigated. Fabricated hybrid composites were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), and adhesion test analysis. Additionally, surface morphology and tensile testing were reported. Fourier transform infrared spectroscopy (FTIR) revealed that the peak intensities at 1634 and 1643 cm-1 disappeared in treated jute and bamboo fibers. This resulted from the removal of hydroxyl groups on the treated fibers. A higher pH (9 or 10) resulted in the effective modification of bamboo and jute fibers. The TGA results showed that the presence of hybrid fiber led to an earlier degradation of the hybrid composite. The DSC results showed that the crystallinity index declined by 7% to 8%, which improved the adhesion between the fiber and the polymer. According to these finding, the pH level contributed to an improvement in the mechanical properties of the composites. The pH 10-treated hybrid composites exhibited the highest tensile strength and modulus. The surface morphology revealed that at higher pH, the treated hybrid composites exhibited strong adhesion characteristics.

  • Researchpp 6896-6908Sakagami, H., Tokunaga, A., Fujimoto, N., Koga, S., Kobayashi, I., and Momohara, I. (2016). "Effects of drying temperature for Cryptomeria japonica on the permeability of wood preservative. II. The permeability of dried, split log pieces," BioRes. 11(3), 6896-6908.AbstractArticlePDF

    Poor impregnation of sapwood from Cryptomeria japonica kiln-dried logs is a problem for preservative treatment in Japan. The permeability of copper azole (CuAz) into sapwood was reported to decrease with an increase in the drying temperature of logs, due in part to the presence of bordered pits. However, damaged and aspirated bordered pits appeared abundantly at 100 °C and 120 °C, although the difference in permeability was very little. To investigate this phenomenon, two types of smaller split log pieces, one containing both heartwood and sapwood, and the other containing sapwood without heartwood, were dried at 20 °C to 120 °C to test higher drying conditions. Results were similar to those of the dried logs. However, the impregnation and penetration at 80 °C were the lowest, and those at 100 °C and 120 °C were greater than the dried logs. Additionally, the number of damaged bordered pits on dried, split samples was generally higher than that of dried logs, as observed with scanning electron microscopy.

  • Researchpp 6909-6919Boruszewski, P., Borysiuk, P., Mamiński, M., and Czechowska, J. (2016). "Mat compression measurements during low-density particleboard manufacturing,"BioRes. 11(3), 6909-6919.AbstractArticlePDF

    This study regards the effect of technological aspects on mat compression during the manufacturing of low-density particleboards made of two low density species – i.e. poplar and pine. Using these materials, three-layer low-density particleboards (500 kg/m3) were prepared. Three series were manufactured: (1) neat pine, (2) poplar-pine (face layer and core layer, respectively) and (3) neat poplar boards. Measurements of real-time variations in mat core temperature, pressure, and mat thickness allowed for the analysis of the mat compaction. Selected mechanical properties (modulus of rupture, modulus of elasticity, and internal bonding) of the manufactured particleboards were determined. Raw material of lower density used for particleboard manufacturing required either prolonged pressing time or more intense heat transfer into the mat core. The highest strength values were obtained for the poplar-pine particleboards.

  • Researchpp 6920-6931Guo, T., Wang, Y., and Huang, J. (2016). "Studies of electroless copper plating on poplar veneer," BioRes. 11(3), 6920-6931.AbstractArticlePDF

    Copper coating was deposited on poplar veneer using different relative concentrations of plating solution. The coating structure, thickness, crystal structure, surface resistivity, contact angle, surface free energy, and electromagnetic shielding effectiveness were investigated. The surface morphology and thickness were observed using scanning electron microscopy, and the crystal structure was analyzed using X-ray diffraction. Increasing the relative concentration of plating solution resulted in a uniform and dense coating structure, and the thickness notably increased. In addition, the lateral direction resistivity was two times greater than the longitudinal direction resistivity, and the surface wettability changed from hydrophilic to hydrophobic, which led to a decline in surface free energy. Electromagnetic shielding effectiveness reached 62 dB in the frequency range of 10 kHz to 1.5 GHz. The electroless plating copper veneer was optimal when the solution contained 80 g/L of CuSO4·5H2O, 20 g/L of C4O6H4KNa, 40 g/L of EDTA-2Na, and 40 mL/L of HCHO 40 mL/L.

  • Researchpp 6932-6939Nonaka, H., Yamamoto, R., Katsuzaki, H., and Funaoka, M. (2016). "Suggested production of a guaiacyl benzofuran derivative from softwood via lignocresol,"BioRes. 11(3), 6932-6939.AbstractArticlePDF

    Lignocresol was isolated from softwood with p-cresol using sulfuric acid and phase separation. An alkaline treatment of the lignocresol, followed by acidification, selectively yielded a guaiacyl coumaran, G1, in the acid-soluble fraction. With further alkaline treatment of G1 in 0.5 M of NaOH solution at 170 °C for 60 min, it was strongly suggested that a guaiacyl benzofuran derivative, G2, was obtained by the elimination of formaldehyde, based on analytical data of the reaction mixture. The process is very unique and well-designed based on the reactivity of Cα-ethers, or Cα-OH, Cβ-aryl-ethers, and Cγ-OH of lignin, although condensation reactions via formaldehyde occurred in parallel to give condensed products with a diarylmethane structure. Because these phenolic dimers, G1 and G2, were recovered from the guaiacyl unit linked with the neighboring guaiacyl units via two b-aryl-ether bonds, they are promising lignin-derived chemicals that are obtainable in a high yield.

  • Researchpp 6940-6947Wang, J., Wang, F., Gao, Z., Zheng, M., and Sun, J. (2016). "Flame retardant medium-density fiberboard with expanded vermiculite," BioRes. 11(3), 6940-6947.AbstractArticlePDF

    This study investigated the effect of expanded vermiculite (EV) on the flammability properties of medium-density fiberboard (MDF), which was evaluated by limiting oxygen index (LOI) and simultaneous thermal analysis (TG-DSC). In addition, the modulus of rupture (MOR) and the modulus of elasticity (MOE) of the samples were studied. The results indicated that the addition of EV increased the LOI of MDF, while it decreased the MOR and MOE of MDF quite rapidly. The TG data showed that the fiber-charring rate of the fire retardant MDF increased sharply, more than 10 times that of untreated MDF. Moreover, with increasing of the ratio of the EV and fiber (V/F), it increased the fiber-charring rate of the MDF sharply, decreased the temperature of the maximum mass loss, and decreased the maximum mass loss rate of MDF. The DSC test results indicated that the total temperature range of the exothermic stage had extended and that the first peak in the exothermic stage decreased rapidly with increasing of V/F ratio.

@BioResJournal

54 years ago

Read More