Volume 11 Issue 3
Latest articles
- Researchpp 6677-6691Han, J., Lv, J., Zhan, X., Huang, R., and Xu, X. (2016). "Interfacial adhesion and damping characteristics of laminated veneer lumber intercalated with rubber sheets," BioRes. 11(3), 6677-6691.AbstractArticlePDF
Laminated wood veneer lumber intercalated with rubber sheets (LLVR) was fabricated using a layered adhesive system composed of polyaryl polymethylene isocyanate (PAPI) for wood-rubber inter-bonding and phenol formaldehyde (PF) resin to glue the wood veneers. The optimized manufacturing process (chloroprene rubber: CR; PAPI: 80 g/m2; PF: 200 g/m2; and silane: 9.0 wt.%) was determined. The process as developed was then utilized to fabricate nine-ply LLVRs of five balanced constructions with two or three CR laminates used as various layers. The physico-mechanical properties of the LLVRs were evaluated, and the results showed that LLVRs had strong shear strength, sound dimensional stability, decent bending strength, and favorable toughening and buffering performances. The newly developed product is an interesting potential alternative to traditional laminated veneer lumber or plywood.
- Researchpp 6692-6707Yao, L., Chen, C., Zheng, X., Peng, Z., Yang, H., and Xie, Y. (2016). "Determination of lignin-carbohydrate complexes structure of wheat straw using carbon-13 isotope as a tracer," BioRes. 11(3), 6692-6707.AbstractArticlePDF
To maximize the use of wheat straw as a feedstock for biofuels and other biorefinery products, the structure of lignin-carbohydrate complexes (LCCs) was characterized by injection of 13C isotope-labeled xylose into living wheat straw. Afterwards, lignin-carbohydrate complexes were extracted from the harvested straw by the Björkman method. The extracted LCCs were chemically characterized by Fourier transform-infrared spectroscopy (FT-IR), sugar composition, molecular weight analysis, 13C-NMR, and HSQC. The results showed that LCCs in wheat straw were particularly enriched with xylan and exhibited narrow polydispersity (Mw/Mn < 1.5). NMR analysis showed that the lignin was linked with the carbohydrates through γ-ester, phenyl glycoside, and benzyl ether bonds. In addition to S, G, and H lignin units, p-coumarate and ferulate were also in the LCCs. The substructures in lignin were β-O-4′, β-β’, and β-5′. Quantitative data analysis of 13C-NMR combined with HSQC showed that the lignin in the LCCs of wheat straw contained guaiacyl (G), syringyl (S), and p-hydroxyphenyl (H) units in the proportion of 5:4:1 (S:G:H). The main lignin substructure, β-O-4′, comprised 71.64% of the isolated lignin. The total LCC linkages (the sum of phenyl glycoside, γ-ester and benzyl ether bonds) were 210.86 /100C9 in 13C-LCC, which was dominated by phenyl glycoside linkages, followed by γ-ester bonds and minor amounts of benzyl ether bonds. Lignin and xylan in the LCCs of wheat straw were mainly linked by benzyl ether bonds and phenyl glycoside linkages.
- Researchpp 6708-6726Oke, M. A., Ishola, M. M., Taherzadeh, M. J., Mohamad Annuar, M. S., and Simarani, K. (2016). "Effects of pretreatment of single and mixed lignocellulosic substrates on production of endoglucanase by Bacillus aerius S5.2," BioRes. 11(3), 6708-6726.AbstractArticlePDF
A mixed substrate (MS) comprising oil palm empty fruit bunch (EFB), oil palm frond (OPF), and rice husk (RH) was evaluated for endoglucanase production by Bacillus aerius S5.2. Effects of sulphuric acid, sodium hydroxide, N-methylmorpholine-N-oxide (NMMO), and hydrothermal pretreatments on endoglucanase production were investigated. Endoglucanase production by B. aerius on the untreated (0.677 U/mL) and pretreated MS (0.305 – 0.630 U/mL) was generally similar, except that the acid (0.305 U/mL) and hydrothermal (0.549 U/mL) pretreatments that were more severe consequently produced significantly lower titres. Alkali pretreatment supported the highest enzyme production (0.630 U/mL) among all pretreatments that were studied. When endoglucanase production on the alkali-pretreated MS and single substrates (SS) was compared, alkali-pretreated EFB produced a titre (0.655 U/mL) similar to the MS, and this was significantly higher than titres recorded on OPF (0.504 U/mL) and RH (0.525 U/mL). Lower enzyme production was found to be consistent with higher pretreatment severity and greater removal of amorphous regions in all the pretreatments. Furthermore, combining the SS showed no adverse effects on endoglucanase production.
- Researchpp 6727-6741Ghorbani, M., Liebner, F., van Herwijnen, H. W. G., Pfungen, L., Krahofer, M., Budjav, E., and Konnerth, J. (2016). "Lignin phenol formaldehyde resoles: The impact of lignin type on adhesive properties," BioRes. 11(3), 6727-6741.AbstractArticlePDF
Lignin-phenol-formaldehyde (LPF) resoles were prepared using different types of lignin at various levels of phenol replacement by lignin (0 to 40 wt.%). Adhesive properties including thermal behavior as determined by differential scanning calorimetry (DSC), time-dependent development of bond strength during hot pressing as determined by automated bonding evaluation system (ABES), tensile shear strength of solid beech wood lap-joints, and free formaldehyde content of the adhesives were investigated. Preparation of phenol-formaldehyde (PF) resole was accomplished using molar ratios of formaldehyde/phenol and NaOH/phenol of 2.5 and 0.3, respectively. Four different types of technical lignins were studied: Sarkanda grass soda lignin, wheat straw soda lignin, pine kraft lignin, and beech organosolv lignin. The synthesis of the resoles was optimized for 20 and 40 wt.% phenol replacement by lignin. Increasing substitution of phenol resulted in faster gain of LPF viscosity for all studied lignins. The best curing performances of the LPF resoles were observed for pine kraft lignin at both 20 and 40% phenol replacement. The amount of formaldehyde not consumed during cooking increased with increasing level of phenol replacement. However, no differences in free formaldehyde content were observed between the different lignin samples at comparable levels of phenol replacement.
- Researchpp 6742-6755Saurabh, C. K., Dungani, R., Owolabi, A. F., Atiqah, N. S., Zaidon, A., Sri Aprilia, N. A., Md. Sarker, Z., and Abdul Khalil , H. P. S. "Effect of hydrolysis treatment on cellulose nanowhiskers from oil palm (Elaeis guineensis) fronds: Morphology, chemical crystallinity, and thermal characteristics," BioRes. 11(3), 6742-6755.AbstractArticlePDF
Oil palm fronds biomass was used as a source for isolation of cellulose nanowhiskers (CNW), and its subsequent characterization was done. Non-cellulosic components such as lignin, hemicellulose, and pectin were removed from the biomass by chemimechanical alkaline hydrogen peroxide method followed by sulphuric acid hydrolysis having different time duration of hydrolysis. Apart from the progressive reduction in peaks characteristic of hemicellulose and lignin dissolution, FTIR spectroscopy analysis showed that there were no significant variations in peak positions, signifying that the hydrolysis did not affect the chemical structure of CNW. FESEM showed that there was gradual reduction in the aggregated structure of fiber due to bleaching. Nanoscale structure of CNW was revealed by TEM. XRD analysis revealed that the natural structure of cellulose I polymorph was maintained irrespective of the hydrolysis time. High thermal stability and aspect ratio of the extracted CNW demonstrated its suitability as a reinforcement material in nanocomposites.
- Researchpp 6756-6767Xu, Q., Wen, J., and Wang, Z. (2016). "Preparation and properties of cassava starch-based wood adhesives," BioRes. 11(3), 6756-6767.AbstractArticlePDF
A biodegradable, environmentally friendly starch-based wood adhesive with cassava starch as a raw material and butyl acrylate (BA) as a co-monomer was synthesized. Results revealed that this cassava starch-based wood adhesive (SWA) was more stable than corn starch-based wood adhesive, and its bonding performance was close to that of commercial PVAc emulsion, even after 90 days of storage. Further analysis found that the improved stability of the adhesive could be attributed to its low minimum film forming temperature (MFFT) and glass transition temperature (Tg) of cassava starch. Moreover, the amount of total volatile organic compounds (TVOCs) emitted by the cassava starch-based wood adhesive were much lower than the Chinese national standard control criteria. Therefore, cassava SWA might be a potential alternative to traditional petrochemical-based wood adhesives.
- Researchpp 6768-6779Hosseinihashemi, S. K., Eshghi, A., Ayrilmis, N., and Khademieslam, H. (2016). "Thermal analysis and morphological characterization of thermoplastic composites filled with almond shell flour/montmorillonite," BioRes. 11(3), 6768-6779.AbstractArticlePDF
The main objective of this research was to study the potential uses of almond shell flour (ASF) in the production of thermoplastic composites containing montmorillonite (MMT). Thirty, 35, and 40 wt% ASF was used, and 2.0 wt% maleic anhydride-grafted polypropylene was used as the compatibilizer. Two levels of MMT nanoclay, 2.5 and 5.0 wt%, were mixed with polypropylene (PP). The effects of MMT on the thermal properties of the blended composites were evaluated using thermogravimetric analysis (TGA), morphological characterization, scanning electron microscopy (SEM), and X-ray diffraction (XRD). The XRD data showed that the relative intercalation of the composites with 2.5 wt% MMT was higher than that of the 5.0 wt% nanoclay composites. The TGA results indicated that by increasing the MMT percentage, the degradation temperature and the thermal stability were enhanced. The MMT exhibited better dispersion in the clay layers of the polymer-matrix composites when increased from 2.5 to 5.0 wt%, and at the 5.0 wt% MMT loading, the size of MMT became larger. The total weight loss of the ASF/PP/MMT composite decreased as the filler content increased, and the thermal stability increased as the MMT content increased.
- Researchpp 6780-6800Rahman, M. L., Sarkar, S. M., Yusoff, M. M., Kulkarni, A. K. D., Chowdhury, Z. Z., and Ali, M. E. (2016). "Poly(amidoxime) from polymer-grafted Khaya cellulose: An excellent medium for the removal of transition metal cations from aqueous solution," BioRes. 11(3), 6780-6800.AbstractArticlePDF
A free radical chain initiation reaction was exploited to prepare poly(acrylonitrile)-grafted Khaya cellulose. The synthesis of the poly(amidoxime) ligand was also performed using oximation reactions. Transition metal cations formed some complexes with the polymeric ligand. The pH of the solution played an important role in the optical detection of Cu2+ ions. The highest absorbance (approximately 94%) of the [Cu-ligand]n+ complex was at pH 6. The sorption quantity increased with increasing Cu2+ ion concentration, which was reflected by a broad peak at 600 nm that was attributed to the charge transfer (- transition) process. The equilibrium sorption capacity of 282 mg/g, with faster adsorption rates (t1/2 = 8 min), suggested that copper possessed excellent adsorption capacity compared with the other cations (Fe3+, Co3+, Cr3+, Ni2+, and Zn2+). The sorption data for all of the cations followed the Freundlich isotherm model, with a high coefficient of determination, reflecting a heterogeneous sorption process by the cellulose-based, poly(amidoxime) adsorbent. The feasibility for recycling of adsorbent was evaluated by the sorption/ desorption study, and the results suggest that a new type adsorbent can be reused in seven cycles without any significant loss in its original sensing and removal performances.
- Researchpp 6801-6807Liu, Y., Li, H., Yang, J., Li, B., Zhang, C., and Liu, M. (2016). "An improved method for determination of pentosans in pulps using dual-wavelength spectroscopy," BioRes. 11(3), 6801-6807.AbstractArticlePDF
The aim of this study was to determine the pentosan content in pulps by a dual-wavelength spectrophotometric method. The method was based on the boiling reaction between pentosan and 12% hydrochloric acid, in which pentosan was subsequently converted to furfural. The concentration of furfural in the distillate was determined by the absorbance at 280 nm and 290 nm. Several different simultaneous equations were solved to obtain the concentrations of furfural in the distillate. The results showed that the method had an excellent accuracy (RSD ≤ 0.61%) and reproducibility (RSD = 3.25%). The spectral interference of the 5-hydroxymethyl-2-furaldehyde in the distillate was eliminated by the dual-wavelength measurement technique. Compared with the TAPPI method (colorimetric method), this method is simple, user-friendly, and practical and has high detection sensitivity.
- Researchpp 6808-6821Zhang, F., Wang, S., Chen, J., Wang, Y., Ru, B., and Zhu, L. (2016). "Effect of coal ash on the steam reforming of simulated bio-oil for hydrogen production over Ni/γ-Al2O3," BioRes. 11(3), 6808-6821.AbstractArticlePDF
An improved system for hydrogen production by the steam reforming of simulated bio-oil was developed. The coal ash was packed in front of nickel-based catalysts, acting as a guard catalyst. The model compounds passed through coal ash and were preliminarily reformed to smaller molecular intermediates containing more CO and CH4, which were then further reformed over the following nickel-reforming catalyst. The improved reaction system succeeded in effectively converting the complex simulated bio-oil into hydrogen and exhibited high activity. For 15 wt.% Ni/γ-Al2O3 catalyst with coal ash packing, the catalyst lifetime was extended to 8 h, with simulated bio-oil almost completely converted into hydrogen. In addition, coke deposition was suppressed.