NC State
BioResources
  • Researchpp 586-596Altun, S., and Tokdemir, V. (2017). "Modification with melamine formaldehyde and melamine-urea formaldehyde resin to improve the physical and mechanical properties of wood," BioRes. 12(1), 586-596.AbstractArticlePDF
    Scots pine and white poplar were modified with melamine formaldehyde (MF) and melamine-urea formaldehyde (MUF) resins to improve their physical and mechanical properties. Impregnation was conducted at 4 bar pressure for 30 or 60 min, and the samples were cured at a temperature of 150 °C for 40 min in an oven. The density, equilibrium moisture content, weight percent gain, bulking effect, water uptake, volumetric swelling, anti-swelling efficiency, modulus of rupture, modulus of elasticity, compression strength parallel to the grain, and Brinell hardness of the modified wood were determined. The anti-swelling efficiencies were 57% and 74% in Scots pine and white poplar, respectively, using the melamine formaldehyde resin. Modification of white poplar with melamine-urea formaldehyde increased the modulus of elasticity, compression strength, and Brinell hardness considerably. Both resins were successful at improving the physical and mechanical properties of Scots pine and white poplar woods.
  • Researchpp 597-607Jankowska, A., Drożdżek, M., Sarnowski, P., and Horodeński, J. (2017). "Effect of extractives on the equilibrium moisture content and shrinkage of selected tropical wood species," BioRes. 12(1), 597-607.AbstractArticlePDF
    The main objective of this research was to investigate tropical wood sorptive properties. For selected tropical wood species (courbaril, ipe, light red meranti, merbau, tatajuba, and teak), the equilibrium moisture content was determined at 20 °C and 9, 30, 55, 70, and 97% relative humidity. The experimentally determined values were analysed using the Hailwood-Horrobin sorption model to compute the fibre saturation point and mono- and multi-layer sorption. There were significant differences in the sorption behaviour of different wood species. Generally, the fibre saturation point of tropical wood species is lower than in wood species from moderate climate zones. The lowest values of fibre saturation point were found for ipe (18.7%), courbaril (20.4%), and tatajuba (20.5%). Furthermore, chloroform-ethanol extractives content was correlated with multilayer sorption and the fibre saturation point, such that a higher content of chloroform-ethanol extractives was associated with a lower equilibrium moisture content. Therefore, chemisorption was not influenced by chloroform-ethanol extractives. Ethanol extracts showed an influence on monomolecular-bound water.
  • Researchpp 608-621Chen, Q., Liu, G., Chen, G., Mi, T., and Tai, J. (2017). "Green synthesis of silver nanoparticles with glucose for conductivity enhancement of conductive ink," BioRes. 12(1), 608-621.AbstractArticlePDF
    This work reported a green method of synthesizing silver nanoparticles (AgNPs) with glucose acting as reducing agents to improve the conductivity of conductive ink. Silver nitrate, glucose, and polyvinylpyrrolidone (PVP), were used as silver precursor, reducing agent, and capping agent, respectively. The optimal condition of synthesizing AgNPs was obtained by varying the reactant ratio and temperature. The AgNPs were characterized by X-ray diffraction (XRD), UV-visible spectroscopy (UV-Vis), and scanning electron microscope (SEM). The obtained AgNPs with diameters of 80 to 100 nm were almost spherical and they were redispersed well in polyurethane acrylate (PUA). Compared with traditional hydrazine hydrate, the prepared AgNPs were better with respect to uniform size, dispersion, stability, and the absence residual solvent. After UV sintering, the conductivity (2.3×105 S/m) and mechanical properties of prepared conductive ink were good. Therefore, using glucose as a reducing agent to prepare AgNPs conductive ink is feasible and noteworthy because it is an extremely common material.
  • Researchpp 622-642He, T., Meng, J., Chen, W., Liu, Z., Cao, T., Cheng, X., Huang, Y., and Yang, X. (2017). "Effects of biochar on cadmium accumulation in rice and cadmium fractions of soil: A three-year pot experiment," BioRes. 12(1), 622-642.AbstractArticlePDF
    A three-year rice pot experiment was conducted to investigate the effects of biochar on cadmium (Cd) accumulation in rice and Cd fractions of soil. The biochar was derived from farmland waste and applied to contaminated paddy soil at various application rates (0, 1, 2, and 4%). The dry matter accumulations in rice, Cd contents of various rice organs, and fraction distributions of Cd in soil were measured. In a 3-year experiment, the results indicated that biochar treatments reduced the exchangeable Cd concentrations by 28.5 to 59.4% in soil, the total Cd accumulations in rice by 2.7 to 23.8%, and promoted rice growth by 0.7 to 3.9%. The application rates of 2% to 4% were considered to be reasonable for both rice growth and remediation of Cd-contaminated soil. Meanwhile, the Cd-contaminated biochar and straw were studied in the above manner for two years. Contaminated biochar reduced the Cd content of individual rice plants and ensured the normal growth of rice, but it had little effect on the Cd contents in specific organs of rice and Cd fractions of soil. However, this indicated that contaminated biomass materials have the possibility to be reused after pyrolysis for remediation of contaminated paddy soil.
  • Researchpp 643-654Wang, Q., Yu, M., Chen, G., Chen, Q., and Tai, J. (2017). "Facile fabrication of superhydrophobic/superoleophilic cotton for highly efficient oil/water separation," BioRes. 12(1), 643-654.AbstractArticlePDF
    This paper presents a facile and versatile strategy to fabricate robust and superhydrophobic/superoleophilic cotton for the removal of oils and organic solvents from polluted water. The superwettability cotton was prepared via in-situ hydrolysis of tetraethoxysilane (TEOS) on the cotton fiber surface using polyvinylpyrrolidone (PVP) as a coupling agent and subsequent hexadecyltrimethoxysilane modification. By simply adjusting the molecular weight of PVP and the concentration of NH3•H2O, the surface roughness of SiO2-modified cotton fibers could be well controlled to generate cotton fibers with excellent superhydrophobicity. The prepared cotton fibers were used as superabsorbents for oil/water separation. It absorbed up to 35 times and 50 times its own weight of n-hexane and chloroform, respectively, while repelling water completely. After collecting the absorbed oils via a simple squeezing method, the cotton could be reused for at least 5 cycles. Moreover, the whole procedure was carried out in a mild environment, with no intricate instruments or toxic reagents.
  • Researchpp 655-661Fan, H., Liu, P., Wang, X., Gao, D., and Liu, J. (2017). "Effect of the crystal shape of precipitated calcium carbonate on the whiteness of modified fly ash," BioRes. 12(1), 655-661.AbstractArticlePDF

    Fly ash was modified using calcium oxide and carbon dioxide. The effects of reaction temperature, the rate of carbon dioxide, and the concentration of calcium hydroxide on the crystal shape of precipitated calcium carbonate coated on the surface of fly ash were studied. The effects of the crystal shape of precipitated calcium carbonate on the whiteness of modified fly ash were analyzed. The research showed that the crystal shape of precipitated calcium carbonate was lamellar when the reaction temperature, the rate of carbon dioxide, and the concentration of calcium hydroxide were 20 °C, 0.2 L/min, 20%, respectively, which was conducive to the higher whiteness of modified fly ash.

  • Researchpp 662-672Panaitescu, D. M., Frone, A. N., Chiulan, I., Gabor, R. A., Spataru, I. C., and Căşărică, A. (2017). "Biocomposites from polylactic acid and bacterial cellulose nanofibers obtained by mechanical treatment," BioRes. 12(1), 662-672.AbstractArticlePDF
    Bacterial cellulose nanofibers (BCNF), obtained by the mechanical disintegration of BC pellicles, were used without any surface treatment for the fabrication of poly(lactic acid) (PLA) nanocomposites by a melt compounding process. The addition of BCNF in different amounts improved both the Young’s modulus and tensile strength of PLA. A 22% increase in these properties was observed in the nanocomposite with 2 wt.% nanofibers, due to the BCNF network formed at this concentration and characterized by atomic force microscopy. BCNF addition also increased the crystallinity and thermal stability of PLA, which were evaluated by thermal analysis. Due to the high purity of BCNF and the environmental friendliness of melt processing, it was concluded that PLA/BCNF nanocomposites can be designed for biomedical field and food packaging.
  • Researchpp 673-683Chen, Y., Wan, J., Wu, Q., and Ma, Y. (2017). "Chemical modification of laccase from Aspergillus oryzae and its application in OCC pulp," BioRes. 12(1), 673-683.AbstractArticlePDF

    Laccase activity and stability were improved and modified through the interaction between laccase amino acid residues (e.g., amino groups (-NH2) and carboxyl groups (-COOH)) and the chemical reagents thiourea dioxide (TDO) and L-phenylalanine methyl ester hydrochloride (L-PME). Compared with the control sample, the activity of the laccase modified with these chemical reagents was increased by 209% and 50%, respectively. The stability of the laccase modified with L-PME increased by 56.9%. However, the laccase modified with TDO only improved slightly. It was clear that reagent L-PME was more efficacious than TDO. The paper formed with addition of L-PME-modified laccase exhibited better performance in terms of tensile strength, bursting strength, and tear strength, which increased by 13%, 10%, 9%, respectively, compared with the paper formed with unmodified laccase.

  • Researchpp 684-695Shen, X., Xie, Y., and Wang, Q. (2017). "Improved acetylation efficacy of wood fibers by ionic liquid pretreatment," BioRes. 12(1), 684-695.AbstractArticlePDF

    Poplar wood fibers (WFs) were pretreated with ionic liquid (IL) 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) at 125 °C for 1 h, and the influence of the wood loadings (5%, 15%, 30%, and 50%) on the pretreatment efficiency and downstream acetylation was studied. The crystallinity and lignin content of the WFs decreased after IL pretreatment at low wood loadings, especially at 5%. Wood fiber acetylation was performed under a molar ratio (acetic anhydride/–OH in the WFs) of 2:1, with toluene as the reaction medium and pyridine as the acid capturer. Ionic liquid pretreatment at 5% and 15% loading greatly contributed to the increase of weight percent gain (WPG) after acetylation, leading to much higher reaction efficiency, or lower energy consumption. The acetylated products that underwent pretreatment (mainly at 5% loading) had slightly higher thermal stability than those that did not undergo pretreatment. The crystallinity and moisture sorption ability of the products were determined primarily by the WPG value.

  • Researchpp 696-703Vanbeveren, S. P. P., Magagnotti, N., and Spinelli, R. (2017). "Increasing the value recovery from short-rotation coppice harvesting," BioRes. 12(1), 696-703.AbstractArticlePDF

    Farmers are reluctant to establish short-rotation coppice because too many uncertainties remain about its economic feasibility. Up to now, most progress has been accomplished by increasing plantation yields through genetic improvement and by reducing management costs through mechanization. In contrast, the potential increase of value recovery has received much less attention. We therefore compared whole-tree chipping with integrated harvesting to test whether more profit could be made by producing pulpwood logs and wood chips, rather than wood chips only. The two systems were compared side-by-side with identical machinery on the same field. Chip production cost was higher for integrated harvesting (15 € Mg-1), because the system was less productive (9 Mg h-1), as compared with whole-tree chipping (9 € Mg-1 and 25 Mg h-1). Pulpwood log production only occurred with the integrated harvesting system, at a cost of 8 € Mg-1. Integrated harvesting incurred higher production costs, but also accrued better value recovery. Under current market conditions, the two systems offered similar profits, in the vicinity of 5000 € ha-1. However, integrated harvesting offered higher flexibility, with a potentially better resilience to market fluctuations.

@BioResJournal

54 years ago

Read More