NC State
BioResources
  • Researchpp 2234-2245Khosravani, A., and Rahmaninia, M. (2013). "The potential of nanosilica - cationic starch wet end system for applying higher filler content in fine paper," BioRes. 8(2), 2234-2245.AbstractArticlePDF

    Multiple studies have considered the nanosilica-cationic starch system to be a retention/drainage aid; however its potential to improve strength has previously been neglected. This research focused on the effect of both nanosilica and cationic starch on certain crucial physical and mechanical properties of fine paper compared with a paper sheet containing no additives to evaluate how this system can compensate for using more filler in fine paper. In previous studies, it was suggested that the cationic starch-nanosilica system induces much tinier flocs and thus possibly results in better strength properties. In this respect, results revealed that cationic starch did, however, improve tensile index; this effect weakened at higher filler levels. Cationic starch and nanoparticles both improved internal bonding, while cationic starches’ effect was more prominent. With more filler, tear index suffered. Although addition of cationic starch partly compensated this negative effect with filled papers, nanoparticles did not seem to have an obvious effect. Therefore, cationic starch provided the limited potential of using more filler and nanoparticles may do it indirectly.

  • Researchpp 2246-2256Pereira, H. (2013). "Variability of the chemical composition of cork," BioRes. 8(2), 2246-2256.AbstractArticlePDF

    The chemical composition of cork was determined, following a sampling that covered the whole production area in Portugal (29 provenances from six regions) with samples taken at cork stripping. To analyse between population variations, a more intensive sampling was made in two locations. The overall mean chemical composition of cork was: extractives 16.2% (dichloromethane 5.8%, ethanol 5.9%, water 4.5%), suberin 42.8% (long-chain lipids 41.0%, glycerol 3.8%), and lignin 22.0% (Klason 21.1%, acid soluble 0.9%). The suberin compositional ratio of long chain lipids to glycerol, LCLip:Gly, was 11.3. The proportion of neutral sugars in the polysaccharides was: glucose 46.1%, xylose 25.1%, arabinose 18.0%, mannose 3.0%, galactose 7.3%, and rhamnose 0.5%. The range of values was large and the variation between individual trees seemed to be the major factor of the differences. Geographical location of cork production was statistically significant only in a few cases when considering site and not when considering regions. The population variation in two sites was important and the absolute difference between the site mean values was small. This research covers the natural variability of cork’s chemical composition and discusses the contribution of the structural compounds to the variation of cork properties.

  • Researchpp 2257-2269Liu, X., Zhu, H., Qin, C., Zhou, J., Zhao, J. R., and Wang, S. (2013). "Adsorption of heavy metal ion from aqueous single metal solution by aminated epoxy-lignin," BioRes. 8(2), 2257-2269.AbstractArticlePDF

    This study investigated the adsorption of the heavy-metal ions Cu(II) and Pb(II) onto a lignin derivative. The lignin derivative was obtained by treating bagasse soda lignin with epichlorohydrin, and subsequently grafting an amine functional group by the Mannich reaction. The morphology of aminated epoxy-lignin was a layered structure with pores characterized by SEM. The heavy-metal ion adsorption data could be described well with the pseudo-first order model for Pb(II) ion and the pseudo-second order model for Cu(II) ion; diffusion was found to be the rate-limiting step when approaching equilibrium. FTIR spectroscopy was used to study the mechanism of heavy-metal adsorption by the derivatized lignin. The results show that the sites for adsorption are related to hydroxyl and amido groups.

  • Researchpp 2270-2282Helander, M., Theliander, H., Lawoko, M., Henriksson, G., Zhang, L., and Lindström, M. E. (2013). "Fractionation of technical lignin: Molecular mass and pH effects," BioRes. 8(2), 2270-2282.AbstractArticlePDF

    Today, lignin from kraft pulping is used mainly as fuel, with only very small amounts being used as raw material for chemicals and materials. This work focuses on using a convenient method for separating large amounts of low molecular weight lignin from the kraft process. Low molecular weight lignin contains larger amounts of phenolic structural units, which are possible modification sites and can be used as antioxidants. Moreover, a product that has reduced polydispersity, low molecular weight, and purified lignin could be a potential material for new applications. The studied process for separating lignin from weak black liquor used a membrane with a cut-off of 1000 Da. During precipitation of the 1000 Da permeate, it is necessary to prevent formation of fairly large, rigid particles/agglomerates of lignin by keeping the temperature low. To improve the dead-end filtration, higher ionic strength is needed for the weak black liquor. Additionally, reducing the end pH will cause more material to precipitate. More sulfur was found in the low molecular weight lignin and at lower precipitation pH, indicating that most sulfur left in the lignin samples might be bound to low molecular weight lignin.

  • Researchpp 2283-2299Huang, R., Kim, B.-J., Lee, S., Yang, Z., and Wu, Q. (2013). "Co-extruded wood-plastic composites with talc-filled shells: Morphology, mechanical, and thermal expansion performance," BioRes. 8(2), 2283-2299.AbstractArticlePDF

    The effect of unmodified talc particles on the mechanical and thermal expansion performance of talc-filled high density polyethylene (HDPE) and co-extruded wood plastic composite (WPC) with talc-filled shells was studied. The use of talc in HDPE helped enhance its tensile, bending, and dynamic modulus, but lowered its tensile and impact strength. The selected models for composite modulus and tensile strength fit the data well after adjusting the model parameters. Talc-filled HDPE had lower linear coefficient of thermal expansion (LCTE) values in comparison with the neat HDPE values, and the LCTE reduction rate increased after the talc loading levels increased above the 30 wt%. Extruding a relatively thick, less-stiff HDPE shell with a large LCTE value over a stiff and thermally stable WPC core decreased overall composite modulus and increased the LCTE values. The composite modulus and strength increased and LCTE values decreased with increase of the talc loading levels in the shell. The impact strength of co-extruded WPC was greatly enhanced with unfilled- and filled HDPE shells.

  • Researchpp 2300-2309Li, T., Huang, B., Wang, S., Chen, C., Tang, L., Lu, Q., and Lin, W. (2013). "Covalent grafting of organic molecules onto activated carbon by a single step," BioRes. 8(2), 2300-2309.AbstractArticlePDF

    Activated carbon appended with organic groups was obtained by a grafting technique using a one-step reaction with diazonium salts. Using the organic aryl amines of 4-bromo aniline and 4-aminoantipyrine as precursors for the corresponding functional diazonium reagents, the bromobenzene and antipyrine molecules were bonded to the surface of carbon. The modified activated carbon was characterized by Fourier transform infrared spectroscopy, X-ray and photoelectron spectroscopy, and BET methods. The results provided evidence of covalent grafting of the organic groups onto the activated carbon by aryldiazonium cations. The present method may provide a convenient and efficient procedure for the preparation of various functionalized activated carbons by means of a single step process.

  • Researchpp 2310-2324Salim, N., Hashim, R., Sulaiman, O., Nordin, N. A., Ibrahim, M., Akil, H. M., Sato, M., Sugimoto, T., and Hiziroglu, S. (2013). "Effect of steaming on some properties of compressed oil palm trunk lumber," BioRes. 8(2), 2310-2324.AbstractArticlePDF

    Compressed lumber is considered to be a superior structural material due to its uniform properties and higher strength than other solid timbers. This study presents the effect of steaming on some properties of compressed lumber of oil palm (Elaeis guineensis) trunks (OPT). The specimens were steamed at a temperature of 130 ⁰C for 2 hours before being compressed in a hot press and evaluated for their physical and mechanical properties. Compressed OPT without steaming was used as a comparison sample to compare the effect of steaming on compressed OPT. The average modulus of rupture of steamed compressed OPT samples was 31.36 MPa, which was 8.7% higher than the compressed OPT without steaming samples. The modulus of elasticity was determined to be 8919 MPa, 9.9% higher than the compressed OPT samples. Steaming enhanced the dimensional properties of the samples. Thickness swelling and water absorption of the steamed compressed OPT samples were 6.57% and 33.84%, respectively, lower than those of the samples without steaming. Some other properties such as compression strength, dynamic bending strength, and the compression and recovery ratios were also evaluated. Scanning electron micrographs taken from the cross section of the samples showed a clear difference between the compressed and uncompressed oil palm.

  • Researchpp 2325-2336Mou, H., Iamazaki, E., Zhan, H., Orblin, E., and Fardim, P. (2013). "Advanced studies on the topochemistry of softwood fibres in low-consistency refining as analyzed by FE-SEM, XPS, and ToF-SIMS," BioRes. 8(2), 2325-2336.AbstractArticlePDF

    The influence of low-consistency refining on the surface chemical and morphological properties of softwood chemical pulp was investigated using a special laboratory refining station and advanced topochemical analyses. Refined pulp was fractionated in order to investigate the refining effect on fibres separately, without fines. The morphological properties of whole pulp and fibre fraction were studied by field-emission-SEM. X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were used to analyze the surface chemistry of the pulp fibres before and after refining. As a result of refining, fibre shape changed from tubular to flat. The surface coverage by extractives increased during refining together with increasing refining energy both in the whole pulp and in the fibre fraction; the increase was more significant in the whole pulp. This is probably due to leakage of hydrophobic components from the pulp fines. In the fibre fraction, surface coverage by lignin increased in the course of refining, but in the whole pulp the trend was the opposite. Similar trends were detected by observing the ToF-SIMS peaks of polysaccharides, lignin, and extractives. Refining modifies the surface chemistry and morphology of fibres, presumably by making structural changes in the fibre cell wall composition. Eventually, these changes induce increased fibre-to-fibre bonding capability and decreased scattering of light.

  • Researchpp 2337-2350Hietanen, T. M., Österberg, M., and Backfolk, K. A. (2013). "Effects on pulp properties of magnesium hydroxide in peroxide bleaching," BioRes. 8(2), 2337-2350.AbstractArticlePDF

    High alkalinity in peroxide bleaching has traditionally been achieved using sodium hydroxide and sodium silicate. In the present work, partial and total substitution of traditional sodium-based peroxide bleaching auxiliary chemicals with a highly pure magnesium hydroxide-based bleaching additive was studied on two high-brightness mechanical pulp types from Norwegian spruce (Picea abies): pressure groundwood and thermomechanical pulp. Peroxide bleaching with 3.0% charge was carried out on both pulps to a given brightness level. The bleached pulp was studied with respect to electrical conductivity, zeta potential, and water retention value. The bleaching filtrate was measured for total organic carbon content, biological and chemical oxygen demand, cationic demand, extractives content, and turbidity. The main results from this study were that the cationic demand and electrical conductivity of the bleaching filtrate were significantly lowered for both pulps when a magnesium-based bleaching process was used. At the same time, the zeta potential of the dilute pulp suspension was only slightly affected. Magnesium hydroxide-based peroxide bleaching seems to increase the water retention value of the pulp, especially on fines-rich pressure groundwood, predicting a good strength potential of the pulp. The bleaching filtrate from the magnesium hydroxide-based process was significantly cleaner in all categories measured, which indicates that this is an environmentally sound concept.

  • Researchpp 2351-2365Pereira, P. H. F., Benini, K. C. C. C., Watashi, C. Y., Voorwald, H. J. C., and Cioffi, M. O. H. (2013). "Characterization of high density polyethylene (HDPE) reinforced with banana peel fibers," BioRes. 8(2), 2351-2365.AbstractArticlePDF

    Lignocellulosic fibers from banana peels were washed with water in order to increase their compatibility with a polymeric matrix, and their properties were compared with unwashed fibers. Washed banana fibers were mixed with high density polyethylene (HDPE) and placed in an injector chamber to produce specimens for tensile tests. Samples of washed banana fibers/HDPE composites were characterized by tensile tests and thermal analysis. The chemical composition of unwashed and washed banana fibers was analyzed by thermogravimetric analysis, scanning electron microscopy, and X-ray diffraction. The treatment with water was effective at removing extractives and increasing the surface roughness, thereby increasing the thermal stability of the fibers. However, results showed that the addition of washed banana fibers decreased the thermal stability of composites, while increasing the melting and crystallization temperatures of composites. The addition of 5 wt% fibers also provided an improvement in mechanical properties of composites in comparison with pure HDPE.

@BioResJournal

55 years ago

Read More